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Abstract

We present a very simple model of how false beliefs can be created by the interplay of
action and observation or lack of observation. This is enough to model several false-belief
tasks that are being used to attribute theory of mind to social agents in interaction, like
the Sally-Anne task. The modelling is intended to shed new light on the interpretation
of the results of action on belief in the light of changes in observational opportunities
for the agents.
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Theory of Mind

One of the key questions in attributing social intelligence to animals

or small children is whether they have theory of mind — the ability

to attribute mental states to others, and to understand that someone

else may be in a different mental state than their own. See [Ver09].



Einstein the Pig



For an earlier attempt to formalize false belief tasks in dynamic epis-

temic logic see [Bol14]. This new approach represents a considerable

simplification, but still satisfies two criteria:

Robustness The formalism should be able to deal with a large range

of false belief tasks, with no strict limit to the order of belief

attribution.

Faithfulness Each action in the false belief task should correspond

to an action or a sequence of actions in the formalism, and the

connection should be straightforward.



Language

We are going to keep this as simple as possible, by focussing on the

bare minimum that is needed to model the kind of social interaction

that makes false belief tasks interesting.

Let P be a finite set of basic propositions and let A be finite set of

agents. In the following BNF definition, assume p ranges over P , and

a over A.

ϕ ::= > | ⊥ | p | cap | ¬ϕ | ϕ ∧ ϕ | Baϕ | [α]ϕ

α ::= (a, p := ϕ) | (a, ?p) | (a,+p) | (a,−p) | α;α

Call this language L, and call α the actions of L. We will call com-

posite actions plans or scenarios.



We assume the usual abbreviations for ∨, →, ↔. We use B̌aϕ for

¬Ba¬ϕ, and 〈α〉ϕ for ¬[α]¬ϕ.

The intention is that cap expresses that p is within the compass (range

of observation and action) of agent a, that Ba is interpreted as belief,

while [α]ϕ asserts that if plan α succeeds, then formula ϕ will hold in

the result state, and 〈α〉ϕ asserts that the plan α succeeds, with ϕ as

a result.

The plans represent attempts by agents to change or inspect the world,

or to change one’s abilities to change or inspect the world.



Attempts at Changing the World

The action p := ϕ is an attempt at change.

If agent a performs this, it depends on whether p is within the agent’s

compass what will happen.

If p is within the agent’s compass, the value of p will be reset, otherwise

the action aborts. If the action succeeds, its result will be visible to

agents that have p within their compass, invisible to other agents.

If an action takes place that is invisible to an agent, a false belief may

be created.



The Compass of an Agent

For the notion of compass, think of

Love’s not Time’s fool, though rosy lips and cheeks

within his bending sickle’s compass come.

Shakespeare, Sonnet 116

So the compass of an agent is his or her range of observation and

command.



Sonnet 116

Let me not to the marriage of true minds

Admit impediments. Love is not love

Which alters when it alteration finds,

Or bends with the remover to remove:

O no; it is an ever-fixed mark,

That looks on tempests, and is never shaken;

It is the star to every wandering bark,

Whose worth’s unknown, although his height be taken.

Love’s not Time’s fool, though rosy lips and cheeks

Within his bending sickle’s compass come;

Love alters not with his brief hours and weeks,

But bears it out even to the edge of doom.

If this be error and upon me proved,

I never writ, nor no man ever loved.



Attempts at Inspecting the World

The action ?p is an attempt to inspect the value of p.

If agent a performs this, it again depends on whether p is within the

agent’s compass what will happen.

If p is within the agent’s compass, a will learn the value of p, otherwise

the action will abort. If the action succeeds, the other agents that have

p within their compass learn that a has learned the value of p, while

the other agents mistakenly believe that nothing has happened.

An inspect action ?p may correct a false belief about p, that is, in-

spection may result in belief revision.



Actions that Change the Compass

The action +p, when performed by agent a, always succeeds, and has

the effect of bringing p within a’s compass.

The action −p, when performed by agent a, always succeeds, and has

the effect of removing p from a’s compass.



Compass Models

A compass modelM is a quadruple (W,R, V, C) where

• W is a finite, non-empty set of worlds,

• R is a function that assigns to each a ∈ A a binary relation R(a)

on W that is transitive, serial and euclidean. We will write R(a)

as Ra, and we will use Ra(w) for the set of worlds

{v ∈ W | Ra(w, v)}.

• V is a valuation on W , i.e. V is a function from W to P(P ).

The members of V (w) are the basic propositions that are true at

w.

• C is a compass function on A, i.e., C is a function from A to

P(P ) that assigns to any a ∈ A thet set of basic propositions

that are within a’s compass.



Truth Definition

LetM = (W,R, V, C) be a compass model. Let w ∈ W .

• M, w |= > always.

• M, w |= ⊥ never.

• M, w |= p iff p ∈ V (w).

• M, w |= cap iff p ∈ C(a).

• M, w |= ¬ϕ iff it is not the case thatM, w |= ϕ.

• M, w |= ϕ1 ∧ ϕ2 iff bothM, w |= ϕ1 andM, w |= ϕ2.

• M, w |= Baϕ iff it holds for all v ∈ Ra(w) thatM, v |= ϕ.

• M, w |= [α]ϕ iff either [[α]](M, w) =↑ (undefined), or [[α]](M, w) |=
ϕ, where [[·]] is defined as below.



Action Updates

[[α]] is a partial function from pairs of compass models and states to

pairs of compass models and states.

Assume M = (W,R, V, C) and w ∈ W . We will model the change

operator p := ϕ by creating new sets of worlds W × {1, 2}, i.e., the

members of W ′ are pairs (v, 1) or (v, 2), with v ∈ W . We will write

(v, 1) as v1 and (v, 2)) as v2.



Change

• [[(a, p := ϕ)]](M, w) is undefined in case p /∈ C(a).

Explanation: if p is not in the compass of a, the attempt at change

aborts.



• [[(a, p := ϕ)]](M, w) equals (M′, w1) in case p ∈ C(a).

The new actual world is the old actual world, with index 1.

M′ = (W ′, R′, V ′, C) is given by:

– W ′ = W × {1, 2}.
– R′ is given by

R′b(v1) =

{
{z1 | z ∈ Rb(v)} if p ∈ C(b)

{z2 | z ∈ Rb(v)} otherwise

R′b(v2) = {z2 | z ∈ Rb(v)}

Explanation: the worlds with index 1 are visible for the agents

that have p in their compass, while the other agents see the

corresponding worlds with index 2 instead.



– V ′ is given by

V ′(v1) =

{
V (v) ∪ {p} ifM, v |= ϕ

V (v)− {p} ifM, v 6|= ϕ

V ′(v2) = V (v).

Explanation: if p is in the compass of a, p gets the value of ϕ

(in the worlds with index 1) but this is invisible to agents that

do not have p within their compass (the worlds with index 2).



Comparison With Action Model Update

The update result can be compared to the action model update [BM04],

with added substitutions for modelling factual change [BvEK06], with

the following action model, where it is assumed that B are the agents

that have p within their compass, and C are the agents that have not.

The coloured frame indicates the actual action.

p := ϕ

B

C
>

B ∪ C



Test

• [[(a, ?p)]](M, w) is undefined in case p /∈ C(a).

• [[(a, ?p)]](M, w) equals (M′, w) in case p ∈ C(a).

HereM′ = (W ′, R′, V ′, C), with

W ′ = {v1 | v ∈ W andM, v |= p}
∪ {v2 | v ∈ W andM, v 6|= p}
∪ {v3 | v ∈ W}

R′ given by:

R′a(v1) =

{
{z1 | z ∈ Ra(v)} if this set 6= ∅,
{v1} otherwise

R′a(v2) =

{
{z2 | z ∈ Ra(v)} if this set 6= ∅,
{v2} otherwise

R′a(v3) = {z3 | z ∈ Ra(v)}.



If b 6= a, p ∈ C(b) then

R′b(v1) = R′b(v2) = {z1 | z ∈ Rb(v)} ∪ {z2 | z ∈ Rb(v)},

R′b(v3) = {z3 | z ∈ Rb(v)},
if p /∈ C(b) then

R′b(v1) = R′b(v2) = R′b(v3) = {z3 | z ∈ Rb(v)}.

V ′ is given by V ′(vx) = V (v).



Comparison With Action Model Update

To explain the semantics of the update with (a, ?p), consider the

action model, where a learns the value of p, the B agents are

aware of this, and the C agents mistakenly believe that nothing

happens.

p

a

¬p

a

B >

C

C

{a} ∪B ∪ C

The actions with the tests for p and for ¬p are both actual. What

actually happens depends on the value of p in the input model.



Exception

– Consider the case where p ∈ C(a) but we are in a world v

with the truth value of p at v different from the truth value

of p at any of the Ra-successors of v.

– In this case it is impossible for a to learn the value of p by

‘arrow elimination’.

– We remove the inconsistency by cutting the link between v

and its Ra successors while adding an a-self loop at v. Note

that such ‘belief revision’ is beyond the power of action model

update, where the update actions can only remove arrows.



Compass Change

• [[(a,+p)]](M, w) equals (M′, w), where M′ = (W,R, V, C ′),

with C ′(a) = C(a) ∪ {p}, and C ′(b) = C(b) for b 6= a.

• [[(a,−p)]](M, w) equals (M′, w), where M′ = (W,R, V, C ′),

with C ′(a) = C(a)− {p}, and C ′(b) = C(b) for b 6= a.

Sequencing

• [[α1;α2]](M, w) = [[α1]]([[α2]](M, w)).



Example 1 (The Sally-Anne Scenario [WP83]) Consider the

following scenario involving the two agents s (Sally) and a (Anne).

In the original story Sally and Anne are hiding a marble, but let’s

simplify the task from hiding a marble to making a basic propo-

sition m true or false. Assume that initially both s and a have

m in their compass: C(s) = C(a) = {m}. Then the Sally-Anne

scenario looks like this:

(s,m := >); (s,−m); (a,m := ⊥); (s,+m).

First Sally makes m true. Next, m gets removed from Sally’s

compass (Sally leaves the room). Then a makes m false. Finally

Sally returns to the room, bringing m within her compass again.

It will be useful to spell out the semantics. starting from a model

where both Sally and Anne know that m is false (say).



Example 2 (Semantics of the Sally-Anne Scenario) We start

with a situation where m is false, and both agents know this, and

then show the results of performing the action updates one by one.

In the belief models, the actual world is in bold.

m

C(a) = C(s) = {m}

a, s

⇒ (s,m := >) ⇒ m

C(a) = C(s) = {m}

a, s

⇒ (s,−m)⇒ m

C(a) = {m}, C(s) = ∅

a, s



⇒ (a,m := ⊥)⇒ m

a

s
m

C(a) = {m}, C(s) = ∅

a, s

⇒ (s,+m)⇒ m

a

s
m

C(a) = C(s) = {m}

a, s

In the final model, Anne has a true belief about m, Sally has a

false belief about m, and Anne is aware of Sally’s false belief.



In the DEL formalization of the Sally-Anne false belief task in [Bol14]

there is a problem with a shortened version of the protocol, where Sally

does not leave the room. Let us see whether the present formalization

fares better.

Example 3 (Shortened Sally-Anne Scenario) Sally does not

leave the room. This is rendered simply as:

(s,m := >); (a,m := ⊥).

And the representation we get, again starting out from the situa-

tion where m is false and both s and a know this.

m

C(a) = C(s) = {m}

a, s

⇒ (s,m := >) ⇒ m

C(a) = C(s) = {m}

a, s



⇒ (a,m := ⊥) ⇒ m

C(a) = C(s) = {m}

a, s

So we end up in the situation that we started with, with both Sally

and Ann knowing that m is false. This is correct.



Example 4 (False Beliefs About Actions) Consider an agent

a that has a true belief about q and a false belief about p. Let us

say that p and q are both true, but a believes that p is false.

Suppose a has q within his compass. Then the action (a, q := p)

will result in a false belief about q.

In the actual world of the initial model, q ∧Baq is true.

pq
a

pq

a

C(a) = {q}

⇒ (a, q := p)⇒ pq
a

pq

a

C(a) = {q}

In the actual world of the resulting model, q ∧Ba¬q is true.



Another task that has been used in tests for social cognitive ability is

the so-called “second-order chocolate task.”

Example 5 (Second Order Chocolate Scenario) John and Mary

are in a room, with a chocolate bar. John puts the chocolate in

the drawer and leaves the room. Mary transfers the chocolate to

the box. John secretly observes where Mary has put the bar.

What does Mary believe about where John thinks the chocolate is?



To formalize this, we use the action of performing a test for the

truth of a basic proposition. Again, we simplify the task of hiding

the chocolate as a change between c and c. Let j and m be the

agents John and Mary. Let’s assume c is initially true, and both

John and Mary know this. Then the scenario that unfolds is:

(j, c := ⊥); (j,−c); (m, c := >); (m,−c); (j,+c); (j, ?c); (m,+c).

j makes c true, next removes c from his compass. Then m makes

c false again, next removes c from her compass. Next, j brings

c within his compass again, and observes its value. Finally, m

brings c within her compass. The result should be that m has a

correct belief about c, but attributes to j a false belief about c.

I.e., in the final update result the formulas c, Bmc and BmBj¬c
are all true.



c

C(j) = C(m) = {c}

j,m

⇒ (j, c := ⊥)⇒ c

C(j) = C(m) = {c}

j,m

⇒ (j,−c)⇒ c

C(j) = ∅, C(m) = {c}

j,m



⇒ (m, c := >)⇒ c

C(j) = ∅, C(m) = {c}

m

j
c

j,m

⇒ (m,−c); (j,+c)⇒ c

C(j) = {c}, C(m) = ∅

m

j
c

j,m



⇒ (j, ?c)⇒ c

C(j) = {c}, C(m) = ∅

j

m
c

m

j
c

j,m

⇒ (m,+c)⇒ c

C(j) = C(m) = {c}

j

m
c

m

j
c

j,m

It is clear from the picture that this update sequence does indeed

create a second-order false belief.



Axiomatisation

The base logic is multimodal KD45, so we have rules Modus Ponens

and B Necessitation:

ϕ ϕ→ ψ
ψ

ϕ
Baϕ

Axioms are all propositional validities, plus the K,D, 4 and 5 axioms

for B. We have to add axioms expressing that the compass is global,

in the sense that the compass values are the same at every world.



K Ba(ϕ→ ψ)→ Baϕ→ Baψ

D Ba>
4 Baϕ→ BaBaϕ

5 ¬Baϕ→ Ba¬Baϕ

C+
aa cap→ Bacap

C+
ba cap→ Bbcap

C−aa ¬cap→ Ba¬cap
C−ba ¬cap→ Bb¬cap

This takes care of the static part of the language. To axiomatize the

dynamic part of the language, use the standard DEL approach by

means of reduction axioms. This shows that the action modalities do

not increase the expressive power of the base language.



Planning

A plan is a non-empty finite sequence of atomic actions α. Let |α|
denote the size (length) of a plan α.

Question

Starting from a situation where two agents have true beliefs about a

proposition p, what is the size of the smallest plan that will create a

false first order belief about p?

Answer

Suppose that a has p in its compass and b has not. Then a single

action (a, p := ¬p) is enough. This is essentially the Sally-Ann false

belief plan.



Question

Starting from a situation where two agents have true beliefs about a

proposition p, what is the size of the smallest plan that will create a

false second order belief about p?

Answer

We need size at least 4. For suppose that a has p in its compass and

b has not. Then the shortest plan that will create a false second order

belief is:

(a, p := ¬p); (a,−p); (b,+p); (b, ?p).

This is essentially the second order chocolate plan.



Note that the following plan will not succeed in creating a second-order

false belief:

(a, p := ¬p); (a,−p); (b,+p); (b, p := ¬p).

For suppose that initially p is true. Then the result of carrying out

the plan is:

p

C(a) = {p}, C(b) = ∅

a, b

⇒ (a, p := ¬p); (a,−p); (b,+p); (b, p := ¬p)⇒



p

C(a) = ∅, C(b) = {p}

b

a
p

a

b
p

a, b

This creates a second order true belief about p.



Plan Length Operators

Extend the language with an infinite set of operators [n], where n ∈
N+, and with the following semantics:

M, w |= [n]ϕ iff for all α with |α| ≤ n :

if [[α]](M, w) 6= ↑ then [[α]](M, w) |= ϕ.

Define 〈n〉ϕ as ¬[n]¬ϕ.

〈n〉ϕ expresses that some plan of length at most n makes ϕ true.

This does not increase the expressive power of the language L.

It is possible to exhaustively enumerate all plans up to a given size

(this uses the assumption that the sets of agents and propositions

are finite), so [n]ϕ can be viewed as an abbreviation of a (very long)

formula.



Arbitrary Plans

Consider the operator [∗], with the following semantics:

M, w |= [∗]ϕ iff for all α it holds that

if [[α]](M, w) 6= ↑ then [[α]](M, w) |= ϕ.

Define 〈∗〉ϕ as ¬[∗]¬ϕ.

The formula [∗]ϕ is not definable in L.

Let L∗ be L extended with [∗].
We believe model checking for L∗ is still decidable.



Questions that Need to be Answered

Question What is the complexity of model checking for L∗?

Question What does a complete axiomatisation of L∗ look like?

Question Is satisfiability for L∗ still decidable?
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