Looking at Separation Algebras with Boolean BI-eyes

Dominique Larchey-Wendling & Didier Galmiche TYPES team, ANR Dynres

LORIA - CNRS Nancy, France

First presented at TCS 2014, Rome, Italy.

Separation Logic

- Introduced by Reynolds&O'Hearn 01 to model:
 - a resource logic
 - properties of the memory space (cells)
 - aggregation of cells into wider structures
- Combines:
 - classical logic connectives: \wedge , \vee , \rightarrow ...
 - multiplicative conjunction, magic wand : ∗, →
- Defined via Kripke semantics extended by:

 $m \Vdash A * B$ iff $\exists a, b \text{ s.t. } a, b \triangleright m \text{ and } a \Vdash A \text{ and } b \Vdash B$

Separation models, Separation Algebras

- Decomposition $a, b \triangleright m$ interpreted in various structures:
 - stacks in pointer logic (Reynolds&O'Hearn&Yang 01), $a \uplus b \subseteq m$
 - but also $a \uplus b = m$ (Calcagno&Yang&O'Hearn 01)
 - trees in spatial logics (Calcagno&Cardelli&Gordon 02) $a\mid b\equiv m$
- Additive → can be Boolean (pointwise) or intuitionistic
- Separation Algebra (SA) (Calcagno&O'Hearn&Yang 07):
 - partial and cancellative commutative monoid
 - also, single units, indivisible units, disjointness

Boolean BI (BBI) and PASL

- BBI loosely defined by Pym as BI $+ \{ \neg \neg A \rightarrow A \}$
 - Kripke semantics by ND-monoids, Hilbert system (LW&G 06)
 - Display Logic based cut-free proof-system (Brotherston 09)
 - Structured Sequent proof-search (Park&Seo&Park 13)
 - Labelled sequents (Hóu&Tiu&Goré 13)
- Propositionnal Abstract Separation Logic (PASL)
 - based on separation algebras, partial monoids + . . .
 - labelled tableaux (Larchey-W.&Galmiche 09, Larchey-W. 14)
 - labelled sequents (Hóu&Clouston&Goré&Tiu 14)
- Family of undecidable logics (LW&G 10, B&K 10)

Kripke semantics of BBI&PASL (i)

- Non-deterministic (or relational) monoid (ND) (M, \circ, U)
 - $-\circ:M\times M\longrightarrow \mathcal{P}(M)$ and $U\subseteq M$
 - $ext{ for } X,Y \in \mathcal{P}(M), \ ig| \ X \circ Y = \{z \mid \exists x \in X, \exists y \in Y, z \in x \circ y\} \ ig|$
 - $-x \circ U = \{x\}$ (neutrality)
 - $-x \circ y = y \circ x$ (commutativity)
 - $-x\circ(y\circ z)=(x\circ y)\circ z$ (associativity)
 - $-(\mathcal{P}(M), \circ, U)$ is a (usual) commutative monoid
- In some papers, $U = \{u\}$ is singleton (no impact on BBI)

Kripke semantics of BBI&PASL (ii)

• Boolean (pointwise) Kripke semantics extended by:

$$m \Vdash A * B \quad ext{iff} \quad \exists a, b ext{ s.t. } m \in a \circ b ext{ and } a \Vdash A ext{ and } b \Vdash B$$
 $m \Vdash A \twoheadrightarrow B \quad ext{iff} \quad \forall a, b \quad (b \in a \circ m ext{ and } a \Vdash A) \Rightarrow b \Vdash B$ $m \Vdash \mathbb{I} \quad ext{iff} \quad m \in U$

- Validity in a ND-monoid (M, \circ, U) : $\forall \Vdash, \forall m, m \Vdash A$
- Validity in a sub-class $\mathcal{X} \subseteq \mathrm{ND} \colon \forall M \in \mathcal{X}, M \Vdash A$
- Set of formulas valid in \mathcal{X} : $BBI_{\mathcal{X}}$
- $\mathcal{X} \subseteq \mathcal{Y}$ implies $BBI_{\mathcal{Y}} \subseteq BBI_{\mathcal{X}}$
- The full class ND: $BBI_{ND} \subseteq BBI_{\mathcal{X}}$

Classes of models for BBI, SA properties

- Partial deterministic monoids (PD): $a \circ b \subseteq \{k\}$
- Total (deterministic) monoids (TD): $a \circ b = \{k\}$
- Single unit (SU): $\exists u \ U = \{u\}$
- Cancellative (CA): $\forall x, k, a, b \ x \in (k \circ a) \cap (k \circ b) \Rightarrow a = b$
- Indivisible units (IU): $\forall x,y \mid x \circ y \cap U \neq \emptyset \Rightarrow x \in U$
- Disjointness (DI): $\forall x \ x \circ x \neq \emptyset \Rightarrow x \in U$
- Divisibility/splittability: $(x \not\in U \Rightarrow \exists a, b \not\in U, x \in a \circ b)$
- Cross-split property (longer definition ...)

Summary of our Results

- Some previous results:
 - $BBI_{ND} \subseteq BBI_{PD}$ (Larchey-W.&Galmiche 10)
 - BBI_{PD} ⊊ BBI_{PD+IU} (Broth.&Villard 13, IU as a BBI formula)
 - most props cannot be axiomatized in BBI (Broth.&Villard 13)
- New results:
 - $BBI_{PD} = BBI_{PD+SU+CA}$
 - $-BBI_{PD+IU} = BBI_{PD+DI}$

Single unit models/multiple unit model

- Consider any ND-monoid (M, \circ, U)
- ullet Every element $x\in M$ has a unique unit $u_x\in U$ s.t. $x\circ u_x=\{x\}$
- ullet If $x \in y \circ z$ then $u_x = u_y = u_z$
- The slice monoid:
 - $(M_x = \{y \in M \mid u_y = u_x\}, \circ \cap M_x \times M_x, \{u_x\})$ in class SU
 - $-M=M_{u_1} \uplus \cdots \uplus M_{u_i} \uplus \cdots$
 - $-M, x \not\Vdash F \text{ iff } M_x, x \not\Vdash F \text{ hence CM preserved by slicing}$
- For any class K closed under slicing: $BBI_K = BBI_{K+SU}$
- In particular, $BBI_{ND} = BBI_{SU}$ and $BBI_{PD} = BBI_{PD+SU}$

Words and constraints based models for BBI

- Resources as words of $L^* = |$ multisets | of letters, ϵ empty
- ullet Constraints = (ordered) pairs of words: m + n with $m, n \in L^{\star}$
- ullet Partial monoidal equivalence \sim (PME) are closed under

- Given \mathcal{C} , the closure is $\overline{\mathcal{C}} = \sim_{\mathcal{C}}$; compactness property
- PME extensions: $\sim +\{x_1+y_1,\ldots\} = \overline{\sim \cup \{x_1+y_1,\ldots\}}$
- Aka commutative Thue systems/symmetric VAS w/o reflexivity

PMEs represents the class PD + SU

• More pratical derived rules for PMEs:

$$\frac{kx+y}{x+x} \langle p_l \rangle \quad \frac{x+ky}{y+y} \langle p_r \rangle \quad \frac{x+y}{xk+m} \langle e_l \rangle \quad \frac{x+y}{m+xk} \langle e_r \rangle$$

- From PME \sim to PD + SU:
 - $-\sim$ is a partial equivalence relation
 - $-L^{\star}/\sim = \{[x] \mid x \sim x\}$ is a partial quotient
 - composition: $[z] \in [x] \bullet [y]$ iff $z \sim xy$; neutral: $[\epsilon]$
 - $-(L^{\star}/\sim, \bullet, \{[\epsilon]\})$ of sub-class PD + SU
 - the map $\sim \mapsto L^\star/\sim$ is onto (surjective up to isomorphism)
- Any PD + SU monoid can be obtained as L^{\star}/\sim

Properties as extra PME rules

• Correspondence: $CA/\langle ca \rangle$, $IU/\langle iu \rangle$ and $DI/\langle di \rangle$

$$\frac{kx + ky}{x + y} \langle ca \rangle \qquad \frac{\epsilon + xy}{\epsilon + x} \langle iu \rangle \qquad \frac{xx + xx}{\epsilon + x} \langle di \rangle$$

• For any PME \sim :

$$L^{\star}/{\sim}$$
 is of subclass CA iff \sim closed under $\langle ca
angle$

- ullet Applies to $\mathrm{IU}/\langle iu
 angle$ and $\mathrm{DI}/\langle di
 angle$ as well
- but does not apply to any property (of course):
 - Divisibility/splittability
 - Cross-split property

Labelled tableaux for BBI and basic constraints

• Statements $(\mathbb{T}A:m)$, assertions (ass: $m \rightarrow n$)

$$\mathbb{T}\mathbb{I}:m$$
 $\mathbb{T}A*B:m$ $\mathbb{F}A o B:m$ $\mathbb{I}A*B:m$ $\mathbb{T}A*B:m$ $\mathbb{T}A*B:m$ $\mathbb{T}A:a$ $\mathbb{T}A:a$ $\mathbb{T}A:a$ $\mathbb{T}B:b$ $\mathbb{F}B:b$

- Basic extensions (Larchey-W.&Galmiche 09):
 - 1. $\sim + \{\epsilon m\}$ with $m \sim m$
 - 2. $\sim + \{ab + m\}$ with $m \sim m$ and $a \neq b \in L \setminus A_{\sim}$
 - 3. $\sim + \{am + b\}$ with $m \sim m$ and $a \neq b \in L \setminus A_{\sim}$

Constraints generated by proof-search

- The branches of (finite) tableaux contain basic extensions
- Simple PME (sPME) = ∞ sequence of basic extensions from \emptyset
- Exhaustive failed proof-search (saturated open branch):
 - contains a sPME, which provides a counter-model
 - strong completeness (Larchey-Wendling 14):

 $BBI_{PD} = BBI_{PD+SU}$ is complete for the class of simple PMEs

- For any sub-class K s.t. $\mathsf{sPME} \subseteq K \subseteq \mathsf{PD}$: $\mathsf{BBI}_{\mathsf{PD}} = \mathsf{BBI}_K$
 - we study the properties of simple PMEs
 - obtain other refined completeness/equiv. results

Equations for (some) "free" PME extensions

- Given \sim PME over L; m and α words in L^*
- ullet Hypotheses: $m\sim m,\ \mathcal{A}_{lpha}\cap\mathcal{A}_{\sim}=\emptyset$ and $\alpha
 eq\epsilon$
- We prove equations for type-1 and type-2 extensions:

```
\sim + \{\alpha + m\} = \{x\delta\alpha^u + y\delta\alpha^v \mid \exists i, \ xm^u \sim ym^v, xm^{i+u} \sim ym^{i+v} \text{ and } \delta \prec \alpha^i\}
\sim + \{\alpha m + \alpha m\} = \sim \cup \{\delta x + \delta y \mid x \sim y, \epsilon \neq \delta \prec \alpha \text{ and } \exists q \ xq \sim m\}
```

- For $\alpha = \epsilon$: first equation does not hold; second holds but useless
- Cover basic extensions ab + m, am + b
- But not basic ext. ϵm

Properties of $\epsilon - m$, invertible letters and words

• PME closed under rules ($\epsilon \sim \gamma \beta$ means " γ and β are inverse"):

$$\frac{\epsilon + \gamma \quad \epsilon + \beta}{\epsilon + \gamma \beta} \left\langle \epsilon_{c} \right\rangle \qquad \frac{x + y \quad \epsilon + \gamma \beta}{\gamma x + \gamma y} \left\langle i_{c} \right\rangle \qquad \frac{x + \beta y \quad \epsilon + \gamma \beta}{\gamma x + y} \left\langle i_{\leftarrow} \right\rangle$$

$$\frac{\epsilon + \gamma \beta \quad \epsilon + \gamma \beta'}{\beta + \beta'} \left\langle i_{\uparrow} \right\rangle \qquad \frac{\gamma x + \gamma y \quad \epsilon + \gamma \beta}{x + y} \left\langle i_{s} \right\rangle \qquad \frac{\gamma x + y \quad \epsilon + \gamma \beta}{x + \beta y} \left\langle i_{\rightarrow} \right\rangle$$

- ullet Invertible letters: $egin{aligned} \mathcal{I}_\sim = \{\mathsf{c} \in L \mid \epsilon \sim \mathsf{c}eta \; ext{holds for some} \; eta \in L^\star \} \end{aligned}$
 - invertible words: $\gamma \in \mathcal{I}^{\star}_{\sim}$ iff $\epsilon \sim \gamma \beta$ for some β
 - for any $\gamma \in \mathcal{I}_{\sim}^{\star}, \ x \sim y \ ext{iff} \ \gamma x \sim \gamma y$
- ullet If $\{x,y\}\cap \mathcal{I}^\star_\sim=\emptyset$ then $\mathcal{I}_{\sim+\{x^{oldsymbol{+}}y\}}=\mathcal{I}_\sim$
- $\bullet \ \ \text{If} \ \{x,y\} \cap \mathcal{I}^{\star}_{\sim} \neq \emptyset \ \text{then} \ \mathcal{I}_{\sim} \cup \mathcal{A}_{x} \cup \mathcal{A}_{y} \subseteq \mathcal{I}_{\sim +\{x y\}}$

Cancellativity and invertible squares for PME ext.

- Cancellativity means closure under rule $\langle ca \rangle$: $\frac{kx + ky}{x + y} \langle ca \rangle$
- Invertible squares for \sim : for any c, if $cc \sim cc$ then $c \in \mathcal{I}_{\sim}$
- ullet \sim has $\langle ca \rangle$ then $\sim + \{ lpha m \}$ and $\sim + \{ lpha m lpha m \}$ have $\langle ca \rangle$
- If α square-free (cc $\not\prec \alpha$) then $\sim +\{\alpha + m\}$ and $\sim +\{\alpha m + \alpha m\}$ preserve invertible squares
- $\sim + \{ab + m\}$ is of the form $\sim + \{\alpha + m\}$
- $\sim + \{am + b\} = (\sim + \{am + am\}) + \{b + am\}$ - thus $\sim + \{am + b\}$ of form $(\sim + \{\alpha m + \alpha m\}) + \{\alpha' + m\}$

ab + m and am + b ext. preserve cancel. and invert. squares

Extension $\sim + \{\epsilon + m\}$

- $C_0 = \{kx ab, ky ac\}$
- $\sim_0 = \overline{\mathcal{C}_0}$
- ullet \sim_0 is cancellative, i.e. closed under $\langle ca
 angle$
- ullet \sim_0 contains no squares, thus has invertible squares
- $\mathcal{I}_{\sim_0} = \emptyset$

Extension $\sim + \{\epsilon - m\}$ does not preserve $\langle ca \rangle$

- $C_1 = C_0 \cup \{\epsilon + b, \epsilon + c\} = \{kx + ab, ky + ac\} \cup \{\epsilon + b, \epsilon + c\}$
- $\sim_1 = \overline{\mathcal{C}_1} = \sim_0 + \{\epsilon + b\} + \{\epsilon + c\}$
- $\mathcal{I}_{\sim_1} = \{\mathsf{b},\mathsf{c}\}$
- \sim_1 is not cancellative, kx \sim_1 ky but x \approx_1 y
- ullet Cancellativity is $egin{bmatrix} ext{not preserved} \end{bmatrix}$ by $\sim + \{\epsilon m\}$
- Squares are bb \sim_1 bb and cc \sim_1 cc; thus \sim_1 has invertible squares

 $\sim + \{\epsilon - m\}$ does not preserve invertible squares

$$\begin{bmatrix} \mathsf{a} \sim_2 \mathsf{k} \sim_2 \mathsf{k} \mathsf{y} \sim_2 \cdots \sim_2 \mathsf{k} \mathsf{y}^n \sim_2 \cdots \\ & & & & & & & & & & & & & & & & \\ \hline \epsilon & & & & & & & & & & & & & & & & \\ \hline \end{bmatrix} \begin{bmatrix} \mathsf{y} & & & & & & & & & & & & & & & \\ \mathsf{y} & & & & & & & & & & & & & & \\ \end{bmatrix} \begin{bmatrix} \mathsf{y}^2 & & & & & & & & & & & & & & \\ \mathsf{y}^n & & & & & & & & & & & \\ \end{bmatrix}$$

- $C_2 = C_1 \cup \{\epsilon + x\} = \{kx + ab, ky + ac\} \cup \{\epsilon + b, \epsilon + c, \epsilon + x\}$
- $\sim_2 = \overline{\mathcal{C}_2} = \sim_1 + \{\epsilon + \mathsf{x}\}$
- $\mathcal{I}_{\sim_2} = \{b, c, x\}; \quad \epsilon \sim_2 b^* c^* x^* \text{ not displayed}$
- \sim_2 is not cancellative, k \sim_2 yk but $\epsilon \not\sim_2$ y
- \sim_2 contains non-invertible squares, yy \sim_2 yy but y $\not\in \mathcal{I}_{\sim_2}$
- Invertible squares prop. is not preserved by $\sim + \{\epsilon m\}$

Group PME vs. Abelian groups

- In a group PME: $\mathcal{I}_{\sim} = \mathcal{A}_{\sim}$
- All defined letters are invertible
- Typical example: $\sim_{\mathcal{C}} = \overline{\mathcal{C}}$ with $\mathcal{C} = \{\epsilon + a_1, \dots, \epsilon + a_p\}$
- If \sim is a group PME then:
 - $\mathcal{L}_{\sim} = \mathcal{I}_{\sim}^{\star} \; (x \sim x \; ext{iff} \; x \in \mathcal{I}_{\sim}^{\star})$
 - $-L^{\star}/\sim$ is an Abelian group
 - $\ x \sim_{\mathcal{C}} y ext{ iff } x y \in \sum_i \mathbb{Z} a_i \ (\mathbb{Z} ext{-module})$
- Group PMEs are cancellative
- Group PMEs have invertible squares (obvious)

Primary PME

- For \sim PME, $m \sim m$, $\mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha} = \emptyset$, $\alpha \neq \epsilon$ square-free
 - type-1 extension: $\sim + \{\alpha m\}$
 - type-2 extension: $\sim + \{\alpha m + b\}$ with $b \in L \setminus (A_{\sim} \cup A_{\alpha})$
- A primary PME is either (inductively)
 - a group-PME
 - a type-1 or type-2 extension of a primary PME
- Group-PME are cancellative and have invertible squares
- Primary extensions preserve both properties

Primary PMEs are cancellative and have invertible squares

From Basic PMEs to Primary PMEs (principle)

- Let $C = x_1 y_1, \ldots, x_p y_p$ sequence of basic extensions
- ullet Property: if $x\sim_{\mathcal{C}} y$ then $x\in\mathcal{I}_{\mathcal{C}}^{\star}$ iff $y\in\mathcal{I}_{\mathcal{C}}^{\star}$
- $\mathcal{I}_{\mathcal{C}}$ by a fixpoint computation
- ullet Put invertible constraints $(x_i,y_i\in\mathcal{I}_\mathcal{C}^\star)$ upfront:
 - $-\mathcal{C} = \mathcal{D}, \mathcal{E} \text{ with } \mathcal{D} \in \mathcal{I}_{\mathcal{C}}^{\star} \times \mathcal{I}_{\mathcal{C}}^{\star} \text{ (hence } \sim_{\mathcal{D}} \text{ is a group-PME)}$
 - order in \mathcal{E} same as in \mathcal{C} ; $\mathcal{E} = \mathcal{C} \setminus \mathcal{D}$
 - ${\mathcal E}$ equivalent to a sequence of primary extensions of $\sim_{\mathcal D}$

From Basic PMEs to Primary PMEs (example)

- $C = a\epsilon + b$, cd + b, ec + f, $\epsilon + f$ (basic sequence)
- $\mathcal{I}_{\mathcal{C}} = \{f, e, c\} \text{ and } \mathcal{D} = \epsilon + f, ec + f$
- $\mathcal{E} = a + b, cd + b$
- But c (of cd \rightarrow b) is not new anymore w.r.t. $\epsilon \rightarrow f$, ec $\rightarrow f$, a \rightarrow b
- $\epsilon \sim_{\mathcal{D}}$ ec hence cd \rightarrow b equiv. to d \rightarrow eb (of type-1)
- C equiv. ϵf , ec f, a b, d eb which is primary

Simple PMEs and Equivalence Results

- Primary PMEs are cancellative with invertible squares
- Basic PMEs can be transformed into primary PMEs
 - hence basic PMEs are cancellative with invertible squares
 - simple PMEs are cancel. with invert. squares (by compactness)
- ullet For any PME: $\langle iu
 angle$ and invertible squares implies $\langle di
 angle$
 - simple PMEs with $\langle iu
 angle$ also satisfy $\langle di
 angle$
- $BBI_{PD} = BBI_{PD+SU}$ is complete for simple PMEs:
 - hence $BBI_{PD} = BBI_{PD+SU} = BBI_{PD+CA} = BBI_{PD+SU+CA}$
 - and $BBI_{PD+IU} = BBI_{PD+DI} = BBI_{PD+SU+CA+IU+DI}$

Conclusion, Perspectives

- Labelled tableaux are sound/complete for PASL (PD + SU + CA)
- Cancellativity rule is redundant in labelled sequents for PASL
- BBI_{PD+SU+IU} complete for disjointness DI
- Perspectives:
 - study other properties of sPMEs
 - provide a constructive proof of equivalence
 - effectively (efficiently?) compute basic PMEs (proof assistant)