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/ Separation Logic I \

e Introduced by Reynolds&O’Hearn 01 to model:
— a resource logic
— properties of the memory space (cells)

— aggregation of cells into wider structures

e Combines:
— classical logic connectives: A, V, — ...

— multiplicative conjunction, magic wand : *, —

e Defined via Kripke semantics extended by:

mli-AxB 1f da,bst.a,bomandal-AandblF B
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e Decomposition a,b > m interpreted in various structures:

— stacks in pointer logic (Reynolds&O’Hearn& Yang 01),
adbCm

— but also a Wb = m (Calcagno&Yang&O’'Hearn 01)
— trees in spatial logics (Calcagno&Cardelli& Gordon 02)

alb=m
e Additive — can be Boolean (pointwise) or intuitionistic

e Separation Algebra (SA) (Calcagno&O’Hearn&Yang 07) :

— partial and cancellative commutative monoid

\ — also, single units, indivisible units, disjointness

/ Separation models, Separation Algebras' \

/
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/ Boolean Bl (BBI) and PASLI \

e BBI loosely defined by Pym as Bl + {——A — A}
— Kripke semantics by ND-monoids, Hilbert system (LW&G 06)
— Display Logic based cut-free proof-system (Brotherston 09)
— Structured Sequent proof-search (Park&Seo&Park 13)
— Labelled sequents (Héu&Tiu& Goré 13)

e Propositionnal Abstract Separation Logic (PASL)

— based on separation algebras, partial monoids + ...
— labelled tableaux (Larchey-W.&Galmiche 09, Larchey-W. 14)
— labelled sequents (Hou&Clouston& Goré&Tiu 14)

\o Family of undecidable logics (LW&G 10, B&K 10) /
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Kripke semantics of BBI&PASL (i) I

e Non-deterministic (or relational) monoid (ND) (M, o, U)
—o:MxM-—P(M)and U C M
—for X,Y e P(M),| XoY ={z|TzeX,yeY,z€zoy}

— zoU = {z} (neutrality)
— zoy =y oz (commutativity)
— zo(yoz)=(zoy)oz (associativity)

— (P(M),o,U) is a (usual) commutative monoid

e In some papers, U = {u} is singleton (no impact on BBI)
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/ Kripke semantics of BBI&PASL (ii)'

e Boolean (pointwise) Kripke semantics extended by:

mlFAxB 1iff da,bst.mcaobandal-AanddlI- B
ml-A—~«B iff Va,b (b€aomandal-A)=5>bIFB
m |F 1 iff meU

e Validity in a ND-monoid (M,0,U): V IF,Vm, m |- A
e Validity in a sub-class Y CND: VM e X, M IF A
e Set of formulas valid in X: BBl y

e X C )Y implies BBly, C BBly

\o The full class ND: BBlyp € BBl y

~
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/ Classes of models for BBI, SA properties' \

e Partial deterministic monoids (PD): aod C {k}

e Total (deterministic) monoids (TD): aob = {k}

e Single unit (SU): Ju U = {u}

e Cancellative (CA): Vz,k,a,b z € (koa)N(kobd)=a=15
e Indivisible units (IU): Vz,y zoyNU #0 =2 €U

e Disjointness (DI): Vo zoz #D=zcU

e Divisibility/splittability: (z ¢ U = da,b € U,z € a 0 b)

\o Cross-split property (longer definition ...) /
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Summary of our Results'

BBInp —»

BBlpp

BBlpptsu

u

BBlpp+ca

RSN
BBlppisu+ca
_

BBlpp+1v == BBlppip1

e Some previous results:

— BBIyp € BBlpp (Larchey-W.&Galmiche 10)
— BBlpp € BBlppyy (Broth.&Villard 13, IU as a BBI formula)

~

— most props cannot be axiomatized in BBI (Broth.&Villard 13)

e New results:

— BBlpp = BBlpptsu+ca

\ — BBlpp+1y = BBlpp4p1
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/ Single unit models/multiple unit model' \

e Consider any ND-monoid (M, o,U)
e Every element z € M has a unique unit u, € U s.t. zou, = {z}
o frcyozthen u; =uy =u,

e The slice monoid:
— My ={ye M |uy=uz}t,oN M, x M,{u;}) in class SU
~ M=M, W WM, -
— M,z ¥ Fiff M.,z ¥ I hence CM preserved by slicing

e For any class K closed under slicing: | BBlx = BBlx.1su

\o In particular, BBlyp = BBlgy and BBlpp = BBlppsyu /




/ Words and constraints based models for BBI' \

e Resources as words of L* = | multisets | of letters, ¢ empty

e Constraints = (ordered) pairs of words: m — n with m,n € L*

e Partial monoidal equivalence ~ (PME) are closed under

T~y T~y Y-z
(€) (s) (t)
€ ~— € Yy~ T -~z
Ty — TY ky —ky -y
— (d) (c)
T -~ T kx — ky

e Given C, the closure is C = ~¢; compactness property

e PME extensions: ~+ {z; —y1,...} = ~U{21 — y1,...}

\o Aka commutative Thue systems/symmetric VAS w/o reﬂeXivity/
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/ PMEs represents the class PD + SUI

e More pratical derived rules for PMEs:

kr — vy x -— ky T -~y yk — m T -y m — yk

(p1) (pr) (e1)

T~ T Yy — Y zk —m m — zk

e From PME ~ to PD + SU:
— ~ 18 a partial equivalence relation
— L*/~={|z] | z ~ z} is a partial quotient
— composition: [z] € [z] e [y] iff z ~ zy; neutral: [e]
— (L*/~,e,{[€]}) of sub-class PD + SU

— the map ~ +— L*/~ is onto (surjective up to isomorphism)

\o Any PD + SU monoid can be obtained as L*/~

~

(er)

/
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/ Properties as extra PME rules' \

e Correspondence: CA/(ca), IU/(zu) and DI/(dz)

kr — k €~ T -
Y (ca) Loy 22T g

T~y €~ €~

e For any PME ~:

L*/~ is of subclass CA iff ~ closed under (ca)

e Applies to IU/(1u) and DI/(dz) as well

e but does not apply to any property (of course):
— Divisibility /splittability

\ — Cross-split property /
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e | Basic extensions

TI: m TAxB:m
| |
ass: €—m ass: ab—-—m
TA:a
TB:b

FA—-«B:m
|

ass: am —b
TA : a
FB:b

(Larchey-W.&Galmiche 09):

1. ~+{e—m} withm ~m

2. ~+{ab~-m} withm ~m and a# b e L\ A.

\ 3. ~+{am —~b} withm ~mand a#be L\ AL

/Labelled tableaux for BBl and basic constraints '\

e Statements (TA : m), assertions (ass: m — n)

/
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/ Constraints generated by proof—search' \

e The branches of (finite) tableaux contain basic extensions
e Simple PME (sPME) = oo sequence of basic extensions from ()

e Exhaustive failed proof-search (saturated open branch):
— contains a sPME, which provides a counter-model

— strong completeness (Larchey-Wendling 14):

BBlpp = BBlpp.isy 1s complete for the class of simple PMEs

e For any sub-class K s.t. sPME C K C PD: | BBlpp = BBl

— we study the properties of simple PMEs

\ — obtain other refined completeness/equiv. results /
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Equations for (some) “free” PME extensions'

e Given ~ PME over L; m and a words in L*

e Hypotheses: m ~m, A, NA. =0 and | # ¢

e We prove equations for type-1 and type-2 extensions:

~+ {a~m} = {zda¥ —ysa® | i, zm¥ ~ ym?,zm'T¥ ~ ym TV and § < o'}

~+{am ~-am} = ~U{dzx ~dy |z ~y,e #5 < aand g zg ~ m}

e For|a = e first equation does not hold; second holds but useless

e Cover basic extensions ab —m, am — b

e But not basic ext. e — m
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e~y €~p T~y e~ Py e—vf
(€c) (ic) (1)
€ ~vp YT~ VY YT~ Y
e~v8 e—8" YT~y €~B YT~y e€—8
; <’L/]\> <Zs> <Z—>>
B~B -y z — Py

/Properties of ¢ — m, invertible letters and words \I

e PME closed under rules (e ~ v means “y and [ are inverse”):

o Invertible letters: |Z. = {c € L | € ~ c¢f holds for some 8 € L*}

— invertible words: v € Z* iff ¢ ~ vf for some

— forany y € ZX, z ~ y iff yz ~ vy

o If {z,y} NZL =0thenZ ;. =7o

\o If{z,y} NTL #0then T UA, UAy CT f1puyy

/
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/Cancellativity and invertible squares for PME ext.\l

e Cancellativity means closure under rule (ca): ke ~— ky (ca)

Y

e Invertible squares for ~: |for any c, if cc ~ ccthenc € 7.

e ~ has (ca) then ~ + {a — m} and ~ 4+ {am — am} have (ca)

o If a square-free (cc £ a) then ~+ {a —m} and ~ + {am — am}

preserve invertible squares
o ~+ {ab—~ m} is of the form ~ + {a — m}

o ~+{am ~b} =(~+{am —am})+ {b—~am}
— thus ~ 4+ {am — b} of form (~ + {am — am}) + {a’ — m}

\ ab — m and am — b ext. preserve cancel. and invert. squares /

17



-

Extension ~ + {€ — m} I

kx ~0 ab

ac ~q ky

k

X

y

allb||c

Co = {kx — ab, ky — ac}

~0 :CO

~p 1s cancellative, i.e. closed under (ca)

~p contains no squares, thus has invertible squares

T =10

~
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Extension ~ + {€¢ — m} does not preserve (ca)

C1 =CoU{e~b,e ~c} = {kx — ab,ky — ac} U{e —b,e —c}

a.b*c* ~1 kx.b*c* ~1 ky.b*c*

k.b*c* x.b*c* y.b*c*

e.b*c*

~1 :C_1:N0—|—{€—°—b}—|—{€_'—C}

INl — {b7 C}

~1 is not cancellative, kx ~1 ky but x <1 y

Cancellativity is

not preserved

by ~ + {€ —m}

~

\o Squares are bb ~; bb and cc ~; cc; thus ~; has invertible squareS/
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/N + {€e — m} does not preserve invertible squares \I

ar\/2 kr\/2 kyN2...N2 kynNQ"°

6 y y2 o o o yn o o o

e (o =CiU{e—-x}={kx—ab,ky —ac}U{e~b,e ~c,e — x}
oy =T = 1+ {e—x)

e 7., =1{b,c,x}; €~y b*c*x* not displayed

e ~ 1s not cancellative, k ~5 yk but € ~5 y

e ~ contains non-invertible squares, yy ~o yy but y € 7.,

e Invertible squares prop. is | not preserved | by ~ + {e — m}

/
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Group PME vs. Abelian groups'

In a group PME: |Z. = A

All defined letters are invertible

Typical example: ~¢ = C with C = {e — ay, ..
If ~ 1s a group PME then:

— L. =1 (z~ziff z € I})

— L*/~ is an Abelian group
—z~cyiffz—y e )  Za; (Z-module)
Group PMEs are cancellative

Group PMEs have invertible squares (obvious)

,E—~—Qp}

~
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Primary PME I

For ~ PME, m ~m, A.N A, =0, a # € square-free

— type-1 extension: ~ 4+ {a — m}

— type-2 extension: ~ + {am — b} with b € L\ (A U Ay)
A primary PME is either (inductively)

— a group-PME

— a type-1 or type-2 extension of a primary PME

Group-PME are cancellative and have invertible squares

Primary extensions preserve both properties

Primary PMEs are cancellative and have invertible squares
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From Basic PMEs to Primary PMEs (principle)'

o Let C=12; —vy1,...,Zp — Yp sequence of basic extensions

o Property: if z ~c y thenz € I35 iff y € T}
e 7. by a fixpoint computation

e Put invertible constraints (z;,y; € Z5) upfront:
— C=D,& with D € T} x I} (hence ~p is a group-PME)
— order in £ same asin C; £ =C\D

— & equivalent to a sequence of primary extensions of ~p

N /
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4 D

From Basic PMEs to Primary PMEs (example)'

e C =ae—~b,cd ~b,ec —f,e — f (basic sequence)

o 7o ={f,e,c} and D =€ ~f,ec — f

e £ =a—Db,cd—Db

e But c (of cd — b) is not new anymore w.r.t. ¢ — f,ec—f,a~b
e ¢ ~p ec hence cd — b equiv. to d — eb (of type-1)

e C equiv. € — f,ec — f,a — b,d — eb which 1s primary

/
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/ Simple PMEs and Equivalence Results' \

e Primary PMEs are cancellative with invertible squares

e Basic PMEs can be transformed into primary PMEs
— hence basic PMEs are cancellative with invertible squares

— simple PMEs are cancel. with invert. squares (by compactness)

e For any PME: (iu) and invertible squares implies (dz)

— simple PMEs with (zu) also satisfy (dz)
e BBlpp = BBIlpp,gy 1s complete for simple PMEs:

— hence BBlpD = BB|pD_|_SU = BBlpD_|_CA = BBIPD—I—SU+CA

\ — and BBlpp41y = BBlppypr = BBlppisutcativ+nr /
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Conclusion, Perspectives'

Labelled tableaux are sound/complete for PASL (PD + SU + CA)
Cancellativity rule is redundant in labelled sequents for PASL

BBlppsyiiy complete for disjointness DI

Perspectives:
— study other properties of sPMEs
— provide a constructive proof of equivalence

— effectively (efficiently 7) compute basic PMEs (proof assistant)

/
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