
'

&

$

%

Looking at Separation Algebras
with Boolean BI-eyes

Dominique Larchey-Wendling & Didier Galmiche

TYPES team, ANR Dynres

LORIA { CNRS

Nancy, France

First presented at TCS 2014, Rome, Italy.

1



'

&

$

%

Separation Logic

� Introduced by Reynolds&O'Hearn 01 to model:

– a resource logic

– properties of the memory space (cells)

– aggregation of cells into wider structures

� Combines:

– classical logic connectives: ∧, ∨, → . . .

– multiplicative conjunction, magic wand : ∗, −∗

� De�ned via Kripke semantics extended by:

m 
 A ∗B i� ∃a; b s.t. a; b . m and a 
 A and b 
 B
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Separation models, Separation Algebras

� Decomposition a; b . m interpreted in various structures:

– stacks in pointer logic (Reynolds&O'Hearn&Yang 01),

a ] b ⊆ m

– but also a ] b = m (Calcagno&Yang&O'Hearn 01)

– trees in spatial logics (Calcagno&Cardelli&Gordon 02)

a | b ≡ m

� Additive → can be Boolean (pointwise) or intuitionistic

� Separation Algebra (SA) (Calcagno&O'Hearn&Yang 07) :

– partial and cancellative commutative monoid

– also, single units, indivisible units, disjointness
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Boolean BI (BBI) and PASL

� BBI loosely de�ned by Pym as BI+ {¬¬A→ A}

– Kripke semantics by ND-monoids, Hilbert system (LW&G 06)

– Display Logic based cut-free proof-system (Brotherston 09)

– Structured Sequent proof-search (Park&Seo&Park 13)

– Labelled sequents (H�ou&Tiu&Gor�e 13)

� Propositionnal Abstract Separation Logic (PASL)

– based on separation algebras, partial monoids + : : :

– labelled tableaux (Larchey-W.&Galmiche 09, Larchey-W. 14)

– labelled sequents (H�ou&Clouston&Gor�e&Tiu 14)

� Family of undecidable logics (LW&G 10, B&K 10)
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Kripke semantics of BBI&PASL (i)

� Non-deterministic (or relational) monoid (ND) (M; ◦; U)

– ◦ :M ×M −→P(M) and U ⊆M

– for X;Y ∈ P(M), X ◦ Y = {z | ∃x ∈ X;∃y ∈ Y; z ∈ x ◦ y}

– x ◦ U = {x} (neutrality)

– x ◦ y = y ◦ x (commutativity)

– x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity)

– (P(M); ◦; U) is a (usual) commutative monoid

� In some papers, U = {u} is singleton (no impact on BBI)
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Kripke semantics of BBI&PASL (ii)

� Boolean (pointwise) Kripke semantics extended by:

m 
 A ∗B i� ∃a; b s.t. m ∈ a ◦ b and a 
 A and b 
 B

m 
 A−∗B i� ∀a; b (b ∈ a ◦m and a 
 A)⇒ b 
 B

m 
 I i� m ∈ U

� Validity in a ND-monoid (M; ◦; U): ∀ 
; ∀m; m 
 A

� Validity in a sub-class X ⊆ ND: ∀M ∈ X ;M 
 A

� Set of formulas valid in X : BBIX

� X ⊆ Y implies BBIY ⊆ BBIX

� The full class ND: BBIND ⊆ BBIX
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Classes of models for BBI, SA properties

� Partial deterministic monoids (PD): a ◦ b ⊆ {k}

� Total (deterministic) monoids (TD): a ◦ b = {k}

� Single unit (SU): ∃u U = {u}

� Cancellative (CA): ∀x; k; a; b x ∈ (k ◦ a) ∩ (k ◦ b)⇒ a = b

� Indivisible units (IU): ∀x; y x ◦ y ∩ U 6= ∅ ⇒ x ∈ U

� Disjointness (DI): ∀x x ◦ x 6= ∅ ⇒ x ∈ U

� Divisibility/splittability: (x 6∈ U ⇒ ∃a; b 6∈ U; x ∈ a ◦ b)

� Cross-split property (longer de�nition ...)

7



'

&

$

%

Summary of our Results

BBIPD

BBIPD+SU

BBIPD+CA

BBIPD+SU+CABBIND BBIPD+IU BBIPD+DI

� Some previous results:

– BBIND ( BBIPD (Larchey-W.&Galmiche 10)

– BBIPD ( BBIPD+IU (Broth.&Villard 13, IU as a BBI formula)

– most props cannot be axiomatized in BBI (Broth.&Villard 13)

� New results:

– BBIPD = BBIPD+SU+CA

– BBIPD+IU = BBIPD+DI
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Single unit models/multiple unit model

� Consider any ND-monoid (M; ◦; U)

� Every element x ∈M has a unique unit ux ∈ U s.t. x ◦ ux = {x}

� If x ∈ y ◦ z then ux = uy = uz

� The slice monoid:

– (Mx = {y ∈M | uy = ux}; ◦ ∩Mx ×Mx; {ux}) in class SU

– M =Mu1 ] · · · ]Mui ] · · ·

– M;x 1 F i� Mx; x 1 F hence CM preserved by slicing

� For any class K closed under slicing: BBIK = BBIK+SU

� In particular, BBIND = BBISU and BBIPD = BBIPD+SU
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Words and constraints based models for BBI

� Resources as words of L? = multisets of letters, � empty

� Constraints = (ordered) pairs of words: m−·····− n with m;n ∈ L?

� Partial monoidal equivalence ∼ (PME) are closed under

�−·····− �
〈�〉

x−·····− y

y −·····− x
〈s〉

x−·····− y y −·····− z

x−·····− z
〈t〉

xy −·····− xy

x−·····− x
〈d〉

ky −·····− ky x−·····− y

kx−·····− ky
〈c〉

� Given C, the closure is C = ∼C ; compactness property

� PME extensions: ∼+ {x1 −·····− y1; : : :} = ∼ ∪ {x1 −·····− y1; : : :}

� Aka commutative Thue systems/symmetric VAS w/o re
exivity
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PMEs represents the class PD+ SU

� More pratical derived rules for PMEs:

kx−·····− y

x−·····− x
〈pl〉

x−·····− ky

y −·····− y
〈pr〉

x−·····− y yk −·····−m

xk −·····−m
〈el〉

x−·····− y m−·····− yk

m−·····− xk
〈er〉

� From PME ∼ to PD + SU:

– ∼ is a partial equivalence relation

– L?=∼ = {[x] | x ∼ x} is a partial quotient

– composition: [z] ∈ [x] • [y] i� z ∼ xy; neutral: [�]

– (L?=∼; •; {[�]}) of sub-class PD + SU

– the map ∼ 7→ L?=∼ is onto (surjective up to isomorphism)

� Any PD + SU monoid can be obtained as L?=∼
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Properties as extra PME rules

� Correspondence: CA/〈ca〉, IU/〈iu〉 and DI/〈di〉

kx−·····− ky

x−·····− y
〈ca〉

�−·····− xy

�−·····− x
〈iu〉 xx−·····− xx

�−·····− x
〈di〉

� For any PME ∼:

L?=∼ is of subclass CA i� ∼ closed under 〈ca〉

� Applies to IU/〈iu〉 and DI/〈di〉 as well

� but does not apply to any property (of course):

– Divisibility/splittability

– Cross-split property
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Labelled tableaux for BBI and basic constraints

� Statements (TA : m), assertions (ass : m−·····− n)

TI : m

ass : �−·····−m

TA ∗B : m

ass : ab−·····−m

TA : a

TB : b

FA−∗B : m

ass : am−·····− b

TA : a

FB : b

� Basic extensions (Larchey-W.&Galmiche 09):

1. ∼+ {�−·····−m} with m ∼ m

2. ∼+ {ab−·····−m} with m ∼ m and a 6= b ∈ L\A∼
3. ∼+ {am−·····− b} with m ∼ m and a 6= b ∈ L\A∼
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Constraints generated by proof-search

� The branches of (�nite) tableaux contain basic extensions

� Simple PME (sPME) = ∞ sequence of basic extensions from ∅

� Exhaustive failed proof-search (saturated open branch):

– contains a sPME, which provides a counter-model

– strong completeness (Larchey-Wendling 14):

BBIPD = BBIPD+SU is complete for the class of simple PMEs

� For any sub-class K s.t. sPME ⊆ K ⊆ PD: BBIPD = BBIK

– we study the properties of simple PMEs

– obtain other re�ned completeness/equiv. results
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Equations for (some) “free” PME extensions

� Given ∼ PME over L; m and � words in L?

� Hypotheses: m ∼ m, A� ∩ A∼ = ∅ and � 6= �

� We prove equations for type-1 and type-2 extensions:

∼+ {�−·····−m} = {x��u −·····− y��v | ∃i; xmu ∼ ymv ; xmi+u ∼ ymi+v
and � ≺ �i}

∼+ {�m−·····− �m} = ∼ ∪ {�x−·····− �y | x ∼ y; � 6= � ≺ � and ∃q xq ∼ m}

� For � = � : �rst equation does not hold; second holds but useless

� Cover basic extensions ab−·····−m, am−·····− b

� But not basic ext. �−·····−m
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Properties of �−·····−m, invertible letters and words

� PME closed under rules (� ∼ 
� means \
 and � are inverse"):

�−·····− 
 �−·····− �

�−·····− 
�
〈�c〉

x−·····− y �−·····− 
�


x−·····− 
y
〈ic〉

x−·····− �y �−·····− 
�


x−·····− y
〈i←〉

�−·····− 
� �−·····− 
�′

� −·····− �′
〈i↑〉


x−·····− 
y �−·····− 
�

x−·····− y
〈is〉


x−·····− y �−·····− 
�

x−·····− �y
〈i→〉

� Invertible letters: I∼ = {c ∈ L | � ∼ c� holds for some � ∈ L?}

– invertible words: 
 ∈ I?∼ i� � ∼ 
� for some �

– for any 
 ∈ I?∼, x ∼ y i� 
x ∼ 
y

� If {x; y} ∩ I?∼ = ∅ then I∼+{x−·····−y} = I∼

� If {x; y} ∩ I?∼ 6= ∅ then I∼ ∪ Ax ∪ Ay ⊆ I∼+{x−·····−y}
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Cancellativity and invertible squares for PME ext.

� Cancellativity means closure under rule 〈ca〉: kx−·····− ky

x−·····− y
〈ca〉

� Invertible squares for ∼: for any c, if cc ∼ cc then c ∈ I∼

� ∼ has 〈ca〉 then ∼+ {�−·····−m} and ∼+ {�m−·····− �m} have 〈ca〉

� If � square-free (cc 6≺ �) then ∼+ {�−·····−m} and ∼+ {�m−·····− �m}
preserve invertible squares

� ∼+ {ab−·····−m} is of the form ∼+ {�−·····−m}

� ∼+ {am−·····− b} = (∼+ {am−·····− am}) + {b−·····− am}
– thus ∼+ {am−·····− b} of form (∼+ {�m−·····− �m}) + {�′ −·····−m}

ab−·····−m and am−·····− b ext. preserve cancel. and invert. squares
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Extension ∼+ {�−·····−m}

ε

k x y a b c

kx ∼0 ab ac ∼0 ky

� C0 = {kx−·····− ab; ky −·····− ac}

� ∼0 = C0

� ∼0 is cancellative, i.e. closed under 〈ca〉

� ∼0 contains no squares, thus has invertible squares

� I∼0 = ∅
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Extension ∼+ {�−·····−m} does not preserve 〈ca〉

ε.b?c?

k.b?c? x.b?c? y.b?c?

a.b?c? ∼1 kx.b?c? ∼1 ky.b?c?

� C1 = C0 ∪ {�−·····− b; �−·····− c} = {kx−·····− ab; ky −·····− ac} ∪ {�−·····− b; �−·····− c}

� ∼1 = C1 = ∼0 + {�−·····− b}+ {�−·····− c}

� I∼1 = {b; c}

� ∼1 is not cancellative, kx ∼1 ky but x �1 y

� Cancellativity is not preserved by ∼+ {�−·····−m}

� Squares are bb ∼1 bb and cc ∼1 cc; thus ∼1 has invertible squares
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∼+ {�−·····−m} does not preserve invertible squares

ε y y2 yn

a ∼2 k ∼2 ky ∼2 · · · ∼2 kyn ∼2 · · ·

· · · · · ·

� C2 = C1 ∪ {�−·····− x} = {kx−·····− ab; ky −·····− ac} ∪ {�−·····− b; �−·····− c; �−·····− x}

� ∼2 = C2 = ∼1 + {�−·····− x}

� I∼2 = {b; c; x}; � ∼2 b?c?x? not displayed

� ∼2 is not cancellative, k ∼2 yk but � �2 y

� ∼2 contains non-invertible squares, yy ∼2 yy but y 6∈ I∼2

� Invertible squares prop. is not preserved by ∼+ {�−·····−m}
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Group PME vs. Abelian groups

� In a group PME: I∼ = A∼

� All de�ned letters are invertible

� Typical example: ∼C = C with C = {�−·····− a1; : : : ; �−·····− ap}

� If ∼ is a group PME then:

– L∼ = I?∼ (x ∼ x i� x ∈ I?∼)

– L?=∼ is an Abelian group

– x ∼C y i� x− y ∈
∑

i Zai (Z-module)

� Group PMEs are cancellative

� Group PMEs have invertible squares (obvious)
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Primary PME

� For ∼ PME, m ∼ m, A∼ ∩ A� = ∅, � 6= � square-free

– type-1 extension: ∼+ {�−·····−m}

– type-2 extension: ∼+ {�m−·····− b} with b ∈ L\(A∼ ∪ A�)

� A primary PME is either (inductively)

– a group-PME

– a type-1 or type-2 extension of a primary PME

� Group-PME are cancellative and have invertible squares

� Primary extensions preserve both properties

Primary PMEs are cancellative and have invertible squares
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From Basic PMEs to Primary PMEs (principle)

� Let C = x1 −·····− y1; : : : ; xp −·····− yp sequence of basic extensions

� Property: if x ∼C y then x ∈ I?C i� y ∈ I?C

� IC by a �xpoint computation

� Put invertible constraints (xi; yi ∈ I?C) upfront:

– C = D; E with D ∈ I?C × I?C (hence ∼D is a group-PME)

– order in E same as in C; E = C\D

– E equivalent to a sequence of primary extensions of ∼D
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From Basic PMEs to Primary PMEs (example)

� C = a�−·····− b; cd−·····− b; ec−·····− f; �−·····− f (basic sequence)

� IC = {f; e; c} and D = �−·····− f; ec−·····− f

� E = a−·····− b; cd−·····− b

� But c (of cd−·····− b) is not new anymore w.r.t. �−·····− f; ec−·····− f; a−·····− b

� � ∼D ec hence cd−·····− b equiv. to d−·····− eb (of type-1)

� C equiv. �−·····− f; ec−·····− f; a−·····− b; d−·····− eb which is primary
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Simple PMEs and Equivalence Results

� Primary PMEs are cancellative with invertible squares

� Basic PMEs can be transformed into primary PMEs

– hence basic PMEs are cancellative with invertible squares

– simple PMEs are cancel. with invert. squares (by compactness)

� For any PME: 〈iu〉 and invertible squares implies 〈di〉

– simple PMEs with 〈iu〉 also satisfy 〈di〉

� BBIPD = BBIPD+SU is complete for simple PMEs:

– hence BBIPD = BBIPD+SU = BBIPD+CA = BBIPD+SU+CA

– and BBIPD+IU = BBIPD+DI = BBIPD+SU+CA+IU+DI
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Conclusion, Perspectives

� Labelled tableaux are sound/complete for PASL (PD+SU+CA)

� Cancellativity rule is redundant in labelled sequents for PASL

� BBIPD+SU+IU complete for disjointness DI

� Perspectives:

– study other properties of sPMEs

– provide a constructive proof of equivalence

– e�ectively (e�ciently ?) compute basic PMEs (proof assistant)
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