Completeness for Abstract Separation Logics

Dominique Larchey-Wendling \& Didier Galmiche
TYPES team

LORIA - CNRS
Nancy, France

ANR-Dynres, Nancy, France

Separation Logic

- Introduced by Reynolds\&O'Hearn 01 to model:
- a resource logic
- properties of the memory space (cells)
- aggregation of cells into wider structures
- Combines:
- classical logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative conjunction: *
- Defined via Kripke semantics extended by:

$$
m \Vdash A * B \quad \text { iff } \quad \exists a, b \text { s.t. } a, b \triangleright m \wedge a \Vdash A \wedge b \Vdash B
$$

Separation models, Separation Algebras

- Decomposition $a, b \triangleright m$ interpreted in various structures:
- stacks in pointer logic (Reynolds\&O'Hearn\&Yang 01), $a \uplus b \subseteq m$
- but also $a \uplus b=m$ (Calcagno\&Yang\&O'Hearn 01)
- trees in spatial logics (Calcagno\&Cardelli\&Gordon 02) $a \mid b \equiv m$
- Additive \rightarrow can be Boolean (pointwise) or intuitionistic
- Separation Algebra (SA) (Calcagno\&O'Hearn\&Yang 07) :
- partial and cancellative commutative monoid
- also, single units, indivisible units, disjointness

Boolean BI (BBI) and PASL

- BBI loosely defined by Pym as $\mathrm{BI}+\{\neg \neg A \rightarrow A\}$
- Kripke semantics by ND-monoids, Hilbert system (LW\&G 06)
- Display Logic based cut-free proof-system (Brotherston 09)
- Structure Sequent proof-search (Park\&Seo\&Park 13)
- Labeled sequents (Hóu\&Tiu\&Goré 13)
- Propositionnal Abstract Separation Logic (PASL)
- based on separation algebras, partial monoids + . .
- labeled tableaux (Larchey\&Galmiche 09, Larchey 13)
- labeled sequents (Hóu\&Clouston\&Goré\&Tiu 14)
- family of undecidable logics (LW\&G 10, B\&K 10)

Kripke semantics of BBI\&PASL (i)

- Non-deterministic(/relational) monoid (ND) (M, \circ, U)
$-\circ: M \times M \longrightarrow \mathcal{P}(M)$ and $U \subseteq M$
- for $X, Y \in \mathcal{P}(M), X \circ Y=\{z \mid \exists x \in X, \exists y \in Y, z \in x \circ y\}$
$-x \circ U=\{x\}$ (neutrality), $x \circ y=y \circ x$ (commutativity)
$-x \circ(y \circ z)=(x \circ y) \circ z($ associativity $)$
- $(\mathcal{P}(M), \circ, U)$ is a residuated commutative monoid
- residuation on $\mathcal{P}(M): X \multimap Y=\{z \mid z \circ X \subseteq Y\}$

Kripke semantics of BBI\&PASL (ii)

- Boolean (pointwise) Kripke semantics extended by:

$$
\begin{array}{ccl}
m \Vdash A * B & \text { iff } & \exists a, b \text { s.t. } m \in a \circ b \wedge a \Vdash A \wedge b \Vdash B \\
m \Vdash A * B & \text { iff } & \forall a, b \quad(b \in a \circ m \wedge a \Vdash A) \Rightarrow b \Vdash B \\
m \Vdash \mathbb{I} & \text { iff } & m \in U
\end{array}
$$

- Validity in a ND-monoid $(M, \circ, U): \forall \Vdash, \forall m, m \Vdash A$
- Validity in a sub-class $\mathcal{X} \subseteq \mathrm{ND}: \forall M \in \mathcal{X}, M \Vdash A$
- Set of formula valid in $\mathcal{X}: \mathrm{BBI}_{\mathcal{X}}$
- $\mathcal{X} \subseteq \mathcal{Y}$ implies $\mathrm{BBI}_{\mathcal{Y}} \subseteq \mathrm{BBI}_{\mathcal{X}}$
- the full class ND: $\mathrm{BBI}_{\mathrm{ND}} \subseteq \mathrm{BBI}_{\mathcal{X}}$

Classes of models for BBI

- Partial monoids (PD): $a \circ b \subseteq\{k\}$
- Total monoids (TD): $a \circ b=\{k\}$
- Single unit (SU): $\exists u \quad U=\{u\}$
- Cancellative (CA): $\forall x, k, a, b \quad x \in(k \circ a) \cap(k \circ b) \Rightarrow a=b$
- Indivisible units (IU): $\forall x, y \quad x \circ y \cap U \neq \emptyset \Rightarrow x \in U$
- Disjointness (DI): $\forall x \quad x \circ x \neq \emptyset \Rightarrow x \in U$

Single unit models/multiple unit model

- Consider any ND-monoid (M, \circ, U)
- every element $x \in M$ has a unique unit $u_{x} \in U$ s.t. $x \circ u_{x}=\{x\}$
- if $x \in y \circ z$ then $u_{x}=u_{y}=u_{z}$
- the slice monoid:
- $\left(M_{u}=\left\{x \in M \mid u_{x}=u\right\}, \circ \cap M_{u} \times M_{u},\{u\}\right)$ in class SU
- $M=M_{u_{1}} \uplus \cdots \uplus M_{u_{i}} \uplus \cdots$
$-M, x \nVdash F$ iff $M_{u_{x}}, x \nVdash F$ hence CM preserved by slicing
- $\mathrm{BBI}_{\mathrm{ND}}=\mathrm{BBI}_{\mathrm{SU}}$ and $\mathrm{BBI}_{\mathrm{PD}}=\mathrm{BB} I_{\mathrm{PD}+\mathrm{SU}}$

Words and constraints based models for $\mathbf{B B I}$

- Resources as Words of $L^{\star}=$ multisets of letters
- Constraints $=($ ordered $)$ pairs of words: $m \rightarrow n$ with $m, n \in L^{\star}$
- Partial monoidal equivalence $\sim(\mathrm{PME})$

$$
\begin{array}{cc}
-\langle\rightarrow\rangle & \frac{x-y}{y-x}\langle s\rangle \\
& \frac{x y-x y}{x-x}\langle d\rangle
\end{array} \quad \frac{k y \rightarrow k y}{k x-k y}\langle c\rangle
$$

- $\mathrm{PME}=$ set of constraints closed under these rules
- given \mathcal{C}, the closure is $\overline{\mathcal{C}}=\sim_{\mathcal{C}}$; compactness prop.

Extra PME rules, quotients to PD + SU

$\left.\begin{array}{|c|c|}\hline \text { Derived rules } & \text { Extra rules } \\ \hline \frac{k x-y}{x-x}\left\langle p_{l}\right\rangle & \frac{x-y \quad y k-m}{x k-m}\left\langle e_{l}\right\rangle \\ \frac{k x-k y}{x-k y}\langle c a\rangle \\ y-y\end{array} p_{r}\right\rangle \quad \frac{x-y \quad m-y k}{m-x k}\left\langle e_{r}\right\rangle, \frac{\epsilon-x y}{\epsilon-x}\langle i u\rangle$,

- Quotient to PD + SU:
- \sim is a partial equivalence relation: $L^{\star} / \sim=\{[x] \mid x \sim x\}$
- composition of classes: $[z] \in[x] \bullet[y]$ iff $z \sim x y$
$-\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ of sub-class PD +SU ; this map is onto
$-L^{\star} / \sim$ of class CA (r. IU) iff \sim closed under $\langle c a\rangle($ r. $\langle i u\rangle)$

Labelled tableaux for $\mathbf{B B I}$ and basic constraints

- Statements (TA:m), assertions (ass: $m-n$) and req : $m \sim n$

$\mathrm{TII}: m$	$\mathrm{~T} A * B: m$	$\mathrm{~F} A \rightarrow B: m$
I	$\mathrm{\mid}$	$\mathrm{\mid}$
ass $: \epsilon \rightarrow m$	$\mathrm{ass}: a b-m$	$\mathrm{ass}: a m-b$
$\mathrm{~T} A: a$	$\mathrm{~T} A: a$	
$\mathrm{~T} B: b$	$\mathrm{~F} B: b$	

- Basic extensions: $\sim+\{x-y\}=\overline{\sim \cup\{x-y\}}$

1. $\sim+\{\epsilon-m\}$ with $m \sim m$;
2. $\sim+\{\mathrm{ab}-m\}$ with $m \sim m$ and $\mathrm{a} \neq \mathrm{b} \in L \backslash A_{\sim}$;
3. $\sim+\{\mathrm{a} m-\mathrm{b}\}$ with $m \sim m$ and $\mathrm{a} \neq \mathrm{b} \in L \backslash A_{\sim}$.

PS generated constraints, Strong completeness

- Simple PME $=$ infinite sequence of basic extensions from \emptyset
- Failed proof-search generates simple PME as counter-model
- $\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$ is complete for the class of simple PMEs
- Study the properties of simple PMEs
- And obtain other refined completeness results

Extensions $\sim+\{a b \rightarrow m\}$

- given \sim PME over L.
- given $m, \alpha \in L^{\star}$ s.t. $m \sim m, m m \nsim m m, \alpha \neq \epsilon$ and $A_{\alpha} \cap A_{\sim}=\emptyset$

$$
\begin{aligned}
\sim+\{\alpha-m\}=\sim & \cup\{\delta x-\delta y \mid x \sim y, m x \sim m y, \delta \prec \alpha \text { and } \delta \notin\{\epsilon, \alpha\}\} \\
& \cup\{\alpha x-\alpha y \mid m x \sim m y\} \\
& \cup\{\alpha x-y \mid m x \sim y\} \\
& \cup\{x-\alpha y \mid x \sim m y\}
\end{aligned}
$$

- if \sim is cancellative then $\sim+\{\alpha-m\}$ is cancellative
- if α and \sim have no square then $\sim+\{\alpha-m\}$ has no square
- a more recent and general equation ($m m \sim m m$ allowed)
$\sim+\{\alpha-m\}=\left\{\delta \alpha^{u} x-\delta \alpha^{v} y \mid m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y, \delta \prec \alpha^{i}\right.$ for some $\left.i\right\}$

Extensions $\sim+\{\mathrm{am}-\mathrm{b}\}$

- \sim is a PME over L
- $m, \alpha \in L^{\star}$ and $\mathrm{b} \in L$ s.t. $m \sim m, \alpha \neq \epsilon, A_{\sim} \uplus A_{\alpha} \uplus\{\mathrm{b}\}$
$\sim+\{\alpha m-\mathrm{b}\}=\sim \cup\{\delta x-\delta y \mid x \sim y, \epsilon \neq \delta \prec \alpha$ and $x k \sim m$ for some $k\}$
$\cup\{\alpha x-j \mathrm{~b} \mid x \sim j m$ and $j k m \sim m$ for some $k\}$
$\cup\{i \mathrm{~b}-\alpha y \mid y \sim i m$ and $i k m \sim m$ for some $k\}$
$\cup\{i \mathrm{~b}-j \mathrm{~b} \mid i k m \sim m$ and $j k m \sim m$ for some $k\}$
- if \sim is cancellative then $\sim+\{\alpha m-\mathrm{b}\}$ is cancellative
- if α and \sim have no square then $\sim+\{\alpha m-\mathrm{b}\}$ has no square
Problem is with extensions $\sim+\{\epsilon \rightarrow m\}(\mathrm{i})$

$$
\epsilon
$$

$$
\begin{aligned}
& \mathrm{kx} \sim_{0} \mathrm{ab} \quad \mathrm{ac} \sim_{0} \mathrm{ky} \\
& \begin{array}{llllll}
\mathrm{k} & \mathrm{x} & \mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{c}
\end{array}
\end{aligned}
$$

- $\mathcal{C}_{0}=\{\mathrm{kx}-\mathrm{ab}, \mathrm{ky}-\mathrm{ac}\}$
- $\sim_{0}=\overline{\mathcal{C}_{0}}$
- \sim_{0} is cancellative
- \sim_{0} contains no squares

Problem is with extensions $\sim+\{\epsilon \rightarrow m\}$ (ii)

ϵ

- $\mathcal{C}_{1}=\mathcal{C}_{0} \cup\{\epsilon-\mathrm{b}, \epsilon-\mathrm{c}\}$
- $\sim_{1}=\overline{\mathcal{C}_{1}}=\sim_{0}+\{\epsilon-\mathrm{b}\}+\{\epsilon-\mathrm{c}\}$
- \sim_{1} is not cancellative, $\mathrm{kx} \sim_{1}$ ky but $\mathrm{x} \nsim 1_{1} \mathrm{y}$
- \sim_{1} contains no (non-invertible) squares
- i.e. $m m \nsim 1_{1} m m$ unless $\epsilon \sim_{1} m \beta$ for some β

Problem is with extensions $\sim+\{\epsilon-m\}$ (iii)

$$
\mathrm{a} \sim_{2} \mathrm{k} \sim_{2} \mathrm{ky} \sim_{2} \cdots \sim_{2} \mathrm{ky}^{n} \sim_{2} \cdots
$$

$$
\epsilon \quad \mathrm{y} \quad \mathrm{y}^{2} \quad \cdots \quad \mathrm{y}^{n} \quad \cdots
$$

- $\mathcal{C}_{2}=\mathcal{C}_{1} \cup\{\epsilon-\mathrm{x}\}$
- $\sim_{2}=\overline{\mathcal{C}_{2}}=\sim_{1}+\{\epsilon-x\}$
- \sim_{2} is not cancellative, $\mathrm{y} \sim_{2} \mathrm{yk}$ but $\epsilon \propto_{2} \mathrm{k}$
- \sim_{2} contains non-invertible squares, $\mathrm{yy} \sim_{2}$ yy

Invertible elements

$$
\begin{aligned}
& \frac{\epsilon-\alpha \quad \epsilon-\beta}{\epsilon-\alpha \beta}\left\langle\epsilon_{c}\right\rangle \quad \frac{x-y \quad \epsilon-\alpha \beta}{\alpha x-\alpha y}\left\langle i_{c}\right\rangle \quad \frac{x-\beta y \quad \epsilon-\alpha \beta}{\alpha x-y}\left\langle i_{\leftarrow}\right\rangle \\
& \frac{\epsilon-\alpha \beta \quad \epsilon-\alpha \gamma}{\beta+\gamma}\left\langle i_{\uparrow}\right\rangle \frac{\alpha x-\alpha y \quad \epsilon-\alpha \beta}{x+y}\left\langle i_{s}\right\rangle \frac{\alpha x-y \quad \epsilon-\alpha \beta}{x-\beta y}\left\langle i_{\rightarrow}\right\rangle
\end{aligned}
$$

- PME are closed under those rules
- invertible letters: $I_{\sim}=\left\{i \in L \mid \epsilon \sim \mathrm{i} m\right.$ holds for some $\left.m \in L^{\star}\right\}$
- invertible words: $\alpha \in I_{\sim}^{\star}$ iff $\epsilon \sim \alpha \beta$ for some β
- for any $\alpha \in I_{\sim}^{\star}, x \sim y$ iff $\alpha x \sim \alpha y$
- $I_{\sim+\{x+y\}}=I_{\sim}$ unless $\{x, y\} \cap I_{\sim}^{\star} \neq \emptyset$
- group-PME: $A_{\sim}=I_{\sim}$, every defined letter is invertible

Primary PME

- for \sim PME, $m, \alpha \in L^{\star}$ s.t. $m \sim m, \alpha \neq \epsilon, A_{\sim} \cap A_{\alpha}=\emptyset$
- type-1 extension: $\sim+\{\alpha-m\}$ with $m \notin I_{\sim}^{\star}$
- type-2 extension: $\sim+\{\alpha m-\mathrm{b}\}$ with $\mathrm{b} \in L \backslash\left(A_{\sim} \cup A_{\alpha}\right)$
- primary extension: either a type-1 or a type-2 extension
- a primary PME is either
- a group-PME
- a primary extension of a primary PME
- group-PME are cancellative and have invertible squares
- primary extensions preserve both properties

Primary PME and Basic PME

- Primary PMEs are cancellative with invertible squares
- Basic PMEs can be transformed into primary PMEs
- Hence basic PMEs are cancellative
- Simple PMEs are cancellative (by compactness)
- $\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$ is complete for $\mathrm{CA}: \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}+\mathrm{CA}}=\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$

Conclusion

- Labeled tableaux are sound and complete for PASL
- Cancellativity rule is redundant in labeled sequents for PASL
- other properties related to squares:
- IU encoded by rule $\langle i u\rangle$
$-m m \sim m m \Rightarrow \epsilon \rightarrow m \beta \Rightarrow \epsilon \sim m$ (rule $\langle i u\rangle$)
$-\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}+\mathrm{IU}}$ complete for disjointness DI

