A dynamic epistemic logic with separation - some remarks -

A dynamic epistemic logic with separation - some remarks -

J.R. Courtault - D. Galmiche

ANR DynRes Meeting - Nancy

November 2013

Introduction - Epistemic logic

► How the third logician knows that all logicians want a beer?

< ≣⇒

E

► How to model the logician knowledge evolution?

Epistemic logic - language / model

A set of agents (A) and a set of propositional symbols (Prop)

Language:

$$X ::= p \mid \neg X \mid X \land X \mid K_a X$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

such that $p \in \mathsf{Prop}$ and $a \in A$

- Model: $\mathcal{M} = (S, \{\sim_a\}_{a \in A}, V)$
 - S is a non empty set of states
 - $\sim_a \subseteq S \times S$ are equivalence relations
 - $V: \operatorname{Prop}
 ightarrow \mathbb{P}(S)$ are equivalence relations

Epistemic logic - Semantics

Epistemic logic - semantics

- $s \vDash_{\mathcal{M}} p$ iff $s \in V(p)$
- $s \models_{\mathcal{M}} \neg \phi$ iff $s \not\models_{\mathcal{M}} \phi$
- $s \vDash_{\mathcal{M}} \phi \land \psi$ iff $s \vDash_{\mathcal{M}} \phi$ and $s \vDash_{\mathcal{M}} \psi$
- $s \vDash_{\mathcal{M}} K_{\mathsf{a}} \phi \text{ iff } \forall s' \in R \cdot s \sim_{\mathsf{a}} s' \Rightarrow s' \vDash_{\mathcal{M}} \phi$
 - ▶ $K_a\phi$: "the agent *a* knows that ϕ "

$$\blacktriangleright \widehat{K}_{a}\phi \equiv \neg K_{a}\neg \phi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

-
$$A = \{A_1, A_2, A_3\}$$

- $S = \{xxx, xxB, xBx, xBB, Bxx, BxB, BBx, BBB\}$
- $s_1 \sim_{A_i} s_2$ iff $\lfloor s_1 \rfloor_i = \lfloor s_2 \rfloor_i$, where $\lfloor s \rfloor_i$ is the *i*th character of s $(\lfloor xBx \rfloor_1 = x \text{ and } \lfloor xBx \rfloor_2 = B)$

-
$$V(P_{allbeer}) = \{BBB\}$$

$$\neg (K_{A_1}P_{allbeer} \lor K_{A_1} \neg P_{allbeer})$$

We remove the states that do not satisfy the formula (for instance, $xBx \models K_{A_1} \neg P_{allbeer}$):

$$\neg (K_{A_2}P_{allbeer} \lor K_{A_2} \neg P_{allbeer})$$

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

We remove the states that do not satisfy the formula (for instance, $Bxx \models K_{A_2} \neg P_{allbeer}$):

 $K_{A_3}P_{allbeer}$

We remove the states that do not satisfy the formula:

$$BBx - - - BBB \qquad \rightsquigarrow \qquad BBB$$

▶ We can remark that the states are beers, that can be viewed as *resources* (composition/decomposition)

► Extension of epistemic logic with the *separation* that allows the states to be really considered as resources

BI - Resource logic

Bunched Implications (BI) logic (O'Hearn-Pym 1999, Pym 2002)

$$\blacksquare BI = \begin{cases} \land, \lor, \rightarrow, \top, \bot \text{ (additives)} \\ *, \neg *, I \text{ (multiplicatives)} \end{cases}$$

BI (intuitionistic additives) , BBI (classical additives)

- Sequents with bunches (trees of formulae where internal nodes are "," or ";"): $\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \twoheadrightarrow \psi} = \frac{\Gamma; \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi}$
- Bunches can be viewed as areas of a model:

$$A, (B; C), A \rightsquigarrow A BC A$$

- Resources are areas and propositional symbols are properties of resources (areas)
- **BI** and **BBI** focus on separation (, and ∧) / sharing (; and *)

BI - Logical kernel for resource logics

Separation logics

- BI and BBI logical kernels of separation logics
- Some separation logics:
 - **PL**: Pointer (Separation) Logic with $(x \mapsto a, b)$ (O'Hearn et al. 2001)
 - BI-Loc: Separation Logic with locations (Biri-Galmiche 2007)
 - **MBI**: Separation Logic with modalities for processes $(R, E \xrightarrow{a} R', E')$ (Pym-Tofts 2006)
 - **DBI**: Separation Logic with modalities for dynamic properties of resources (Courtault-Galmiche 2013)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

► Extension of the epistemic logic with BBI logic

1 Language and semantics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1 Language and semantics

Language

ELS = BBI + Epistemic logic:

$$\phi ::= p \mid I \mid \neg X \mid X \land X \mid X \lor X \mid X \rightarrow X \mid X \ast X \mid X \neg X \mid K_a X$$

An interesting modality:

$$\mathsf{K}^{\phi}_{\mathsf{a}}\psi \equiv \phi \twoheadrightarrow (\mathsf{K}_{\mathsf{a}}\psi)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

"A resource that satisfies ϕ allows the agent a to know ψ "

Epistemic logic with separation (ELS) - Models

Model

- Partial resource monoid (PRM) is a structure $\mathcal{R} = (R, \bullet, e)$:
 - R is a set of resources
 - e ∈ R
 - •: $R \times R \rightharpoonup R$ such that, for any $r_1, r_2, r_3 \in R$:
 - Neutral element: $r_1 \bullet e \downarrow$ and $r_1 \bullet e = r_1$
 - Commutativity: if $r_1 \bullet r_2 \downarrow$ then $r_2 \bullet r_1 \downarrow$ and $r_1 \bullet r_2 = r_2 \bullet r_1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Associativity: if $r_1 \bullet (r_2 \bullet r_3) \downarrow$ then $(r_1 \bullet r_2) \bullet r_3 \downarrow$ and $r_1 \bullet (r_2 \bullet r_3) = (r_1 \bullet r_2) \bullet r_3$

• A model is a triple $\mathcal{M} = (\mathcal{R}, \{\sim_a\}_{a \in A}, V)$ such that:

- $\mathcal{R} = (R, \bullet, e)$ is a PRM
- For all $a \in A$, $\sim_a \subseteq \mathbb{R} \times \mathbb{R}$ is an equivalence relation
- $V: \mathsf{Prop} o \mathbb{P}(R)$ is a valuation

DMBI Logic - Semantics

Semantics

• Let
$$\mathcal{M} = (\mathcal{R}, \{\sim_a\}_{a \in \mathcal{A}}, V)$$
 be a model:

- $r \models_{\mathcal{M}} p$ iff $r \in V(p)$
- $r \models_{\mathcal{M}} \top$ always
- $r \models_{\mathcal{M}} \bot$ never
- $r \models_{\mathcal{M}} I$ iff r = e
- $r \vDash_{\mathcal{M}} \phi * \psi$ iff $\exists r_1, r_2 \in R \cdot r_1 \bullet r_2 \downarrow$ and $r = r_1 \bullet r_2$ and $r_1 \vDash_{\mathcal{M}} \phi$ and $r_2 \vDash_{\mathcal{M}} \psi$
- $r \vDash_{\mathcal{M}} \phi \twoheadrightarrow \psi \text{ iff } \forall r' \in R \cdot (r \bullet r' \downarrow \text{ and } r' \vDash_{\mathcal{M}} \phi) \Rightarrow r \bullet r' \vDash_{\mathcal{M}} \psi$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

-
$$r \vDash_{\mathcal{M}} K_{a} \phi$$
 iff $\forall r' \in R \cdot r \sim_{a} r' \Rightarrow r' \vDash_{\mathcal{M}} \phi$

Validity:

 $\phi \text{ is } \textit{valid} \text{ iff } r \vDash_{\mathcal{M}} \phi \text{ for all resources } r \text{ of all models } \mathcal{M}$

1 Language and semantics

Three agents A_1 , A_2 and A_3 are in a bar.

In this bar, the customers are only allowed to order at most two beers. The waiter explains to the agents that he can not carry more than four beer glasses.

He asks them if he will be able to bring them their order, in other words he asks if the agents want four beers or less.

- A_1 answers that he is not able to answer yes or no.
- Then, A_2 answers also that he does not know.
- Finally, A_3 answers that the waiter will be able to bring their order.

Thus the waiter asks how many glasses he has to bring.

- A_1 answers that he wants only one beer.
- Then A_2 says that if A_3 would order two more beers then the waiter would not be able to bring the glasses.

- Hearing that, A_3 answers that they want three beers: one for A_1 , two for A_2 and none for himself.

ELS - The example revisited

The model

•
$$A = \{A_1, A_2, A_3\}$$

$$\mathcal{R} = (R, \bullet, e):$$
- $R = \{B_1^{\ i}B_2^{\ j}B_3^{\ k} \mid i, j, k \in \{0, 1, 2\}\}, \text{ where } B_1^{\ 2}B_2^{\ 1}B_3^{\ 0} \text{ means}$
" A_1 orders two beers, A_2 orders one beer and A_3 orders none"

- The resource composition:

$$B_{1}^{i_{1}}B_{2}^{j_{1}}B_{3}^{k_{1}} \bullet B_{1}^{i_{2}}B_{2}^{j_{2}}B_{3}^{k_{2}} = \begin{cases} \uparrow \text{ if } i_{1} + i_{2} > 2 \text{ or } j_{1} + j_{2} > 2 \\ \text{ or } k_{1} + k_{2} > 2 \\ B_{1}^{i_{1} + i_{2}}B_{2}^{j_{1} + j_{2}}B_{3}^{k_{1} + k_{2}} \text{ otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Obviously: $e = B_1^{\ 0} B_2^{\ 0} B_3^{\ 0}$

ELS - The example revisited

The model

The equivalence relations:

$$B_1^{i_1} B_2^{j_1} B_3^{k_1} \sim_{A_1} B_1^{i_2} B_2^{j_2} B_3^{k_2} \quad \text{iff} \quad i_1 = i_2$$

$$B_1^{i_1} B_2^{j_1} B_3^{k_1} \sim_{A_2} B_1^{i_2} B_2^{j_2} B_3^{k_2} \quad \text{iff} \quad j_1 = j_2$$

$$B_1^{i_1} B_2^{j_1} B_3^{k_1} \sim_{A_3} B_1^{i_2} B_2^{j_2} B_3^{k_2} \quad \text{iff} \quad k_1 = k_2$$

Prop = {
$$P_1, P_2, P_3, H$$
}
- $V(P_1) = {B_1^{1}B_2^{0}B_3^{0}}$
- $V(P_2) = {B_1^{0}B_2^{1}B_3^{0}}$
- $V(P_3) = {B_1^{0}B_2^{0}B_3^{1}}$
- $V(H) = {B_1^{i}B_2^{j}B_3^{k} | i+j+k}$

 \blacktriangleright P_i : the order contains only on beer for A_i

 ≤ 4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 \blacktriangleright *H*: the waiter can hold the order

ELS - The example revisited

The waiter: "will I be able to hold your order?"

A1: "I don't know."

 \rightsquigarrow All resources that do not satisfy $\neg K_{A_1}H \land \neg K_{A_1}\neg H$ are hidden:

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

A2: "I don't know."

 \rightsquigarrow All resources that do not satisfy $\neg K_{A_2}H \land \neg K_{A_2}\neg H$ are hidden:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A₃: "Yes."

 \rightsquigarrow All resources that do not satisfy $K_{A_3}H$ are hidden:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A_1 : "I want one beer"

 \rightsquigarrow All resources that do not satisfy $P_1 * \neg (P_1 * \top)$ are hidden:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 A_2 : "if A_3 would order two more beers then the waiter would not be able to bring the glasses"

 \rightsquigarrow All resources that do not satisfy $K_{A_2}((P_3 * P_3) \twoheadrightarrow \neg H)$ are hidden:

$$B_1^1 B_2^2 B_3^0$$

Now, A_3 knows that A_1 wants one beer, A_2 wants two beers and A_3 wants no beer:

$$K_{A_3}(P_1 * P_2 * P_2)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusion

Conclusion / Works in progress

- Epistemic logic with separation:
 - Semantics / expressiveness
 - Tableaux calculus with countermodel extraction
- Public announcement logic with separation:
 - Semantics / expressiveness
 - Tableaux calculus with countermodel extraction

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Other modal extensions:
 - A la DBI (dynamic properties of resources)
 - A la DMBI (action performing)