Propositional dynamic logic with storing, recovering and parallel composition: decidability/undecidability results

Philippe Balbiani, Tinko Tinchev

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Contents

- 1. Syntax
- 2. Semantics
- 3. Expressivity
- 4. A decision problem: satisfiability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 5. Decidability results
- 6. Undecidability results
- 7. Bibliography

Syntax

Programs

 $\bullet \ \alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{s}_1 \mid \mathbf{s}_2 \mid \mathbf{r}_1 \mid \mathbf{r}_2 \mid (\alpha; \beta) \mid (\alpha \cup \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$ Formulas

 $\blacktriangleright \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$

Bibliography

Benevides, M., de Freitas, R., Viana, P.: *Propositional dynamic logic with storing, recovering and parallel composition.* Electronic Notes in Theoretical Computer Science **269** (2011) 95–107.

Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific (2002).

Models

▶ a model is a structure of the form $\mathcal{M} = (W, R, *, V)$ where

- W is a nonempty set of states
- *R* is a function $a \mapsto R(a) \subseteq W \times W$
- ▶ ∗ is a ternary relation over W
- *V* is a function $p \mapsto V(p) \subseteq W$

Truth conditions

• in a model $\mathcal{M} = (W, R, *, V)$ we define

•
$$(p)^{\mathcal{M}} = V(p)$$

• $(\perp)^{\mathcal{M}}$ is empty
• $(\neg \phi)^{\mathcal{M}} = W \setminus (\phi)^{\mathcal{M}}$
• $(\phi \lor \psi)^{\mathcal{M}} = (\phi)^{\mathcal{M}} \cup (\psi)^{\mathcal{M}}$
• $([\alpha]\phi)^{\mathcal{M}} = \{x: \text{ for all } y \in W, \text{ if } x(\alpha)^{\mathcal{M}}y, y \in (\alpha)^{\mathcal{M}}\}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Truth conditions according to Benevides et al. (2011)

▶ in a model $\mathcal{M} = (W, R, *, V)$ we define

•
$$(a)^{\mathcal{M}} = R(a)$$

• $(\phi?)^{\mathcal{M}} = \{(x, y): x = y \text{ and } y \in (\phi)^{\mathcal{M}}\}$
• $(s_1)^{\mathcal{M}} = \{(x, y): \text{ there exists } z \in W \text{ such that } y * (x, z)\}$
• $(s_2)^{\mathcal{M}} = \{(x, y): \text{ there exists } z \in W \text{ such that } y * (z, x)\}$
• $(r_1)^{\mathcal{M}} = \{(x, y): \text{ there exists } z \in W \text{ such that } x * (y, z)\}$
• $(r_2)^{\mathcal{M}} = \{(x, y): \text{ there exists } z \in W \text{ such that } x * (z, y)\}$
• $(\alpha; \beta)^{\mathcal{M}} = \{(x, y): \text{ there exists } z \in W \text{ such that } x * (a)^{\mathcal{M}} z \text{ and } z(\beta)^{\mathcal{M}} y\}$
• $(\alpha \cup \beta)^{\mathcal{M}} = (\alpha)^{\mathcal{M}} \cup (\beta)^{\mathcal{M}}$
• $(\alpha^*)^{\mathcal{M}} = \{(x, y): \text{ there exists } n \in \mathbb{N} \text{ and there exists } z_0, \dots, z_n \in W \text{ such that } x = z_0(\alpha)^{\mathcal{M}} \dots (\alpha)^{\mathcal{M}} z_n = y\}$

• $(\alpha \parallel \beta)^{\mathcal{M}} = \{(x, y): \text{ there exists } z, t, u, v \in W \text{ such that } x * (z, t), y * (u, v), z(\alpha)^{\mathcal{M}}u \text{ and } t(\beta)^{\mathcal{M}}v\}$

Truth conditions according to Frias (2002)

▶ in a model $\mathcal{M} = (W, R, *, V)$ we define

(a)^{$$\mathcal{M}$$} = R(a)
(ϕ ?) ^{\mathcal{M}} = {(x, y): x = y and y \in (ϕ) ^{\mathcal{M}} }
(s₁) ^{\mathcal{M}} = {(x, y): there exists z \in W such that y * (x, z)}
(s₂) ^{\mathcal{M}} = {(x, y): there exists z \in W such that y * (z, x)}
(r₁) ^{\mathcal{M}} = {(x, y): there exists z \in W such that x * (y, z)}
(r₂) ^{\mathcal{M}} = {(x, y): there exists z \in W such that x * (z, y)}
(α ; β) ^{\mathcal{M}} = {(x, y): there exists z \in W such that x (α) ^{\mathcal{M}} z
and z(β) ^{\mathcal{M}} y}
($\alpha \cup \beta$) ^{\mathcal{M}} = {(x, y): there exists n \in N and there exists
z₀,..., z₀ \in W such that x = z₀(α) ^{\mathcal{M}} ..., (α) ^{\mathcal{M}} z_n = y}

• $(\alpha \parallel \beta)^{\mathcal{M}} = \{(x, y): \text{ there exists } z, t \in W \text{ such that } y * (z, t), x(\alpha)^{\mathcal{M}} z \text{ and } x(\beta)^{\mathcal{M}} t\}$

A model $\mathcal{M} = (W, R, *, V)$ is said to be separated iff

• if x * (y, z) and x * (t, u), y = t and z = u

A model $\mathcal{M} = (W, R, *, V)$ is said to be distributive iff

• u * (x, y) and u * (z, t) iff u * (x, t) and u * (z, y)

A model $\mathcal{M} = (W, R, *, V)$ is said to be *-deterministic iff

• if
$$x * (z, t)$$
 and $y * (z, t)$, $x = y$

A model $\mathcal{M} = (W, R, *, V)$ is said to be *R*-deterministic iff

• if xR(a)y and xR(a)z, y = z

A model $\mathcal{M} = (W, R, *, V)$ is said to be serial iff

*(x, y) is nonempty

Expressivity

Programs

 $\ \ \alpha,\beta::=a \mid \phi? \mid s_1 \mid s_2 \mid r_1 \mid r_2 \mid (\alpha;\beta) \mid (\alpha \cup \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$ Formulas

$$\blacktriangleright \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$$

For all $i \in \{1, 2\}$ and for all s_i -free programs α

the programs s_i and α are not equally interpreted in all separated models

For all $i \in \{1, 2\}$ and for all r_i -free programs α

the programs r_i and α are not equally interpreted in all separated models

Expressivity

Programs

 $\bullet \ \alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{s}_1 \mid \mathbf{s}_2 \mid \mathbf{r}_1 \mid \mathbf{r}_2 \mid (\alpha; \beta) \mid (\alpha \cup \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$ Formulas

$$\blacktriangleright \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$$

For all atomic programs a, b and for all \parallel -free programs α

the programs a || b and α are not equally interpreted in all separated models

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A decision problem: satisfiability

Fragment of the language

 $\blacktriangleright \mathcal{L}$

Class of models

► C

Decision problem

- ► $SAT(\mathcal{L}, \mathcal{C})$
 - input: a formula ϕ in \mathcal{L}
 - output: determine whether there exists a model *M* in *C* such that (φ)^M ≠ Ø

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Computability of $SAT(\mathcal{L}, \mathcal{C})$?

Decidability results

Within the class of all separated models

- SAT is in 2EXPTIME for the fragment
 - $\bullet \ \alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{s_1} \mid \mathbf{s_2} \mid (\alpha; \beta) \mid (\alpha \cup \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$

- $\bullet \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$
- SAT is in EXPTIME for the fragment
 - $\alpha, \beta ::= a \mid \phi? \mid s_1 \mid s_2 \mid (\alpha; \beta) \mid (\alpha \cup \beta) \mid \alpha^*$
 - $\bullet \ \phi, \psi ::= \mathbf{p} \mid \bot \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$
- SAT is in PSPACE for the fragment
 - $\alpha, \beta ::= \mathbf{a} \mid \mathbf{s}_1 \mid \mathbf{s}_2 \mid (\alpha; \beta) \mid (\alpha \cup \beta) \mid (\alpha \parallel \beta)$
 - $\bullet \phi, \psi ::= \mathbf{p} \mid \bot \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$

Decidability results

Within the class of all separated *-deterministic models

- SAT is in EXPTIME for the fragment
 - $\alpha, \beta ::= a \mid \phi? \mid s_1 \mid s_2 \mid (\alpha; \beta) \mid (\alpha \cup \beta) \mid \alpha^*$
 - $\bullet \phi, \psi ::= \mathbf{p} \mid \bot \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$

Within the class of all distributive models

- SAT is in 2EXPTIME for the fragment
 - $\bullet \ \alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{s}_1 \mid \mathbf{s}_2 \mid (\alpha; \beta) \mid (\alpha \cup \beta) \mid \alpha^{\star} \mid (\alpha \parallel \beta)$

 $\bullet \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$

Undecidability results

Within the class of all separated models

- SAT is Σ_1^1 -hard for the fragment
 - $\alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{r_1} \mid \mathbf{r_2} \mid (\alpha; \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$

$$\bullet \ \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$$

Within the class of all separated *-deterministic models

• SAT is Σ_1^1 -hard for the fragment

•
$$\alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{r_1} \mid \mathbf{r_2} \mid (\alpha; \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$$

$$\blacktriangleright \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$$

Undecidability results

Within the class of all separated *R*-deterministic models

- SAT is Σ_1^1 -hard for the fragment
 - $\alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{r_1} \mid \mathbf{r_2} \mid (\alpha; \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$
 - $\bullet \phi, \psi ::= \mathbf{p} \mid \bot \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$

Within the class of all separated *R*-deterministic *-deterministic models

(日) (日) (日) (日) (日) (日) (日)

- SAT is Σ₁¹-hard for the fragment
 - $\bullet \ \alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{r}_1 \mid \mathbf{r}_2 \mid (\alpha; \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$
 - $\bullet \ \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$

Undecidability results

Within the class of all separated serial models

- SAT is Σ_1^1 -hard for the fragment
 - $\bullet \ \alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{r_1} \mid \mathbf{r_2} \mid (\alpha; \beta) \mid \alpha^{\star} \mid (\alpha \parallel \beta)$

$$\bullet \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$$

Within the class of all separated serial *-deterministic models

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• SAT is Σ_1^1 -hard for the fragment

•
$$\alpha, \beta ::= \mathbf{a} \mid \phi? \mid \mathbf{r_1} \mid \mathbf{r_2} \mid (\alpha; \beta) \mid \alpha^* \mid (\alpha \parallel \beta)$$

$$\bullet \ \phi, \psi ::= \mathbf{p} \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid [\alpha] \phi$$

Bibliography

Benevides, M., de Freitas, R., Viana, P.: Propositional

dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science **269** (2011) 95–107.

Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific (2002).

Frias, M., Baum, G., Hæberer, A.: Fork algebras in algebra, logic and computer science. Fundamenta Informaticæ**32** (1997) 1–25.

Frias, M., Veloso, P., Baum, G.: *Fork algebras: past, present and future.* Journal of Relational Methods in Computer Science **1** (2004) 181–216.