Propositional dynamic logic with storing, recovering and parallel composition: decidability/undecidability results

Philippe Balbiani, Tinko Tinchev

Contents

1. Syntax
2. Semantics
3. Expressivity
4. A decision problem: satisfiability
5. Decidability results
6. Undecidability results
7. Bibliography

Syntax

Programs

- $\alpha, \beta::=a|\phi ?| \mathbf{s}_{1}\left|\mathbf{s}_{2}\right| r_{1}\left|r_{2}\right|(\alpha ; \beta)|(\alpha \cup \beta)| \alpha^{\star} \mid(\alpha| | \beta)$

Formulas

- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Bibliography
Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.
Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific (2002).

Semantics

Models

- a model is a structure of the form $\mathcal{M}=(W, R, *, V)$ where
- W is a nonempty set of states
- R is a function $a \mapsto R(a) \subseteq W \times W$
- * is a ternary relation over W
- V is a function $p \mapsto V(p) \subseteq W$

Truth conditions

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(p)^{\mathcal{M}}=V(p)$
- $(\perp)^{\mathcal{M}}$ is empty
- $(\neg \phi)^{\mathcal{M}}=W \backslash(\phi)^{\mathcal{M}}$
- $(\phi \vee \psi)^{\mathcal{M}}=(\phi)^{\mathcal{M}} \cup(\psi)^{\mathcal{M}}$
- $([\alpha] \phi)^{\mathcal{M}}=\left\{x\right.$: for all $y \in W$, if $\left.x(\alpha)^{\mathcal{M}} y, y \in(\alpha)^{\mathcal{M}}\right\}$

Semantics

Truth conditions according to Benevides et al. (2011)

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(a)^{\mathcal{M}}=R(a)$
- $(\phi ?)^{\mathcal{M}}=\left\{(x, y): x=y\right.$ and $\left.y \in(\phi)^{\mathcal{M}}\right\}$
- $\left(s_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(x, z)\}$
- $\left(s_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(z, x)\}$
- $\left(r_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(y, z)\}$
- $\left(r_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(z, y)\}$
- $(\alpha ; \beta)^{\mathcal{M}}=\left\{(x, y)\right.$: there exists $z \in W$ such that $x(\alpha)^{\mathcal{M}} z$ and $\left.z(\beta)^{\mathcal{M}} y\right\}$
- $(\alpha \cup \beta)^{\mathcal{M}}=(\alpha)^{\mathcal{M}} \cup(\beta)^{\mathcal{M}}$
- $\left(\alpha^{\star}\right)^{\mathcal{M}}=\{(x, y)$: there exists $n \in \mathbf{N}$ and there exists $z_{0}, \ldots, z_{n} \in W$ such that $\left.x=z_{0}(\alpha)^{\mathcal{M}} \ldots(\alpha)^{\mathcal{M}} z_{n}=y\right\}$
- $(\alpha \| \beta)^{\mathcal{M}}=\{(x, y)$: there exists $z, t, u, v \in W$ such that $x *(z, t), y *(u, v), z(\alpha)^{\mathcal{M}} u$ and $\left.t(\beta)^{\mathcal{M}} v\right\}$

Semantics

Truth conditions according to Frias (2002)

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(a)^{\mathcal{M}}=R(a)$
- $(\phi)^{\mathcal{M}}=\left\{(x, y): x=y\right.$ and $\left.y \in(\phi)^{\mathcal{M}}\right\}$
- $\left(s_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(x, z)\}$
- $\left(s_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(z, x)\}$
- $\left(r_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(y, z)\}$
- $\left(r_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(z, y)\}$
- $(\alpha ; \beta)^{\mathcal{M}}=\left\{(x, y)\right.$: there exists $z \in W$ such that $x(\alpha)^{\mathcal{M}} z$ and $\left.z(\beta)^{\mathcal{M}} y\right\}$
- $(\alpha \cup \beta)^{\mathcal{M}}=(\alpha)^{\mathcal{M}} \cup(\beta)^{\mathcal{M}}$
- $\left(\alpha^{\star}\right)^{\mathcal{M}}=\{(x, y)$: there exists $n \in \mathbf{N}$ and there exists $z_{0}, \ldots, z_{n} \in W$ such that $\left.x=z_{0}(\alpha)^{\mathcal{M}} \ldots(\alpha)^{\mathcal{M}} z_{n}=y\right\}$
- $(\alpha \| \beta)^{\mathcal{M}}=\{(x, y)$: there exists $z, t \in W$ such that $y *(z, t), x(\alpha)^{\mathcal{M}} z$ and $\left.x(\beta)^{\mathcal{M}} t\right\}$

Semantics

A model $\mathcal{M}=(W, R, *, V)$ is said to be separated iff

- if $x *(y, z)$ and $x *(t, u), y=t$ and $z=u$

A model $\mathcal{M}=(W, R, *, V)$ is said to be distributive iff

- $u *(x, y)$ and $u *(z, t)$ iff $u *(x, t)$ and $u *(z, y)$

A model $\mathcal{M}=(W, R, *, V)$ is said to be $*$-deterministic iff

- if $x *(z, t)$ and $y *(z, t), x=y$

A model $\mathcal{M}=(W, R, *, V)$ is said to be R-deterministic iff

- if $x R(a) y$ and $x R(a) z, y=z$

A model $\mathcal{M}=(W, R, *, V)$ is said to be serial iff

- $*(x, y)$ is nonempty

Expressivity

Programs

- $\alpha, \beta::=\boldsymbol{a}|\phi \mathbf{?}| \boldsymbol{s}_{1}\left|\mathbf{s}_{2}\right| r_{1}\left|r_{2}\right|(\alpha ; \beta)|(\alpha \cup \beta)| \alpha^{\star} \mid(\alpha \| \beta)$

Formulas

- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

For all $i \in\{1,2\}$ and for all s_{i}-free programs α

- the programs s_{i} and α are not equally interpreted in all separated models

For all $i \in\{1,2\}$ and for all r_{i}-free programs α

- the programs r_{i} and α are not equally interpreted in all separated models

Expressivity

Programs

$\downarrow \alpha, \beta::=\boldsymbol{a}|\phi ?| \mathbf{s}_{1}\left|\mathbf{s}_{2}\right| r_{1}\left|r_{2}\right|(\alpha ; \beta)|(\alpha \cup \beta)| \alpha^{\star} \mid(\alpha| | \beta)$
Formulas

- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

For all atomic programs a, b and for all $\|$-free programs α

- the programs $a \| b$ and α are not equally interpreted in all separated models

A decision problem: satisfiability

Fragment of the language

- \mathcal{L}

Class of models

- \mathcal{C}

Decision problem

- $\operatorname{SAT}(\mathcal{L}, \mathcal{C})$
- input: a formula ϕ in \mathcal{L}
- output: determine whether there exists a model \mathcal{M} in \mathcal{C} such that $(\phi)^{\mathcal{M}} \neq \emptyset$

Computability of $\operatorname{SAT}(\mathcal{L}, \mathcal{C})$?

Decidability results

Within the class of all separated models

- SAT is in 2EXPTIME for the fragment
- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|s_{1}\right| s_{2}|(\alpha ; \beta)|(\alpha \cup \beta)\left|\alpha^{\star}\right|(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$
- SAT is in EXPTIME for the fragment
- $\alpha, \beta::=a \mid \phi$? $\left|\boldsymbol{s}_{1}\right| \boldsymbol{s}_{2}|(\alpha ; \beta)|(\alpha \cup \beta) \mid \alpha^{\star}$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$
- SAT is in PSPACE for the fragment
- $\alpha, \beta::=\mathbf{a}\left|\boldsymbol{s}_{1}\right| \mathbf{s}_{2}|(\alpha ; \beta)|(\alpha \cup \beta) \mid(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Decidability results

Within the class of all separated *-deterministic models

- SAT is in EXPTIME for the fragment
- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|\boldsymbol{s}_{1}\right| \boldsymbol{s}_{2}|(\alpha ; \beta)|(\alpha \cup \beta) \mid \alpha^{\star}$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Within the class of all distributive models

- SAT is in 2EXPTIME for the fragment

$$
\begin{aligned}
& \text { - } \alpha, \beta::=a \mid \phi \text { ? }\left|s_{1}\right| s_{2}|(\alpha ; \beta)|(\alpha \cup \beta)\left|\alpha^{\star}\right|(\alpha \| \beta) \\
& \text { - } \phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi
\end{aligned}
$$

Undecidability results

Within the class of all separated models

- SAT is Σ_{1}^{1}-hard for the fragment
- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|r_{1}\right| r_{2}|(\alpha ; \beta)| \alpha^{\star} \mid(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Within the class of all separated *-deterministic models

- SAT is Σ_{1}^{1}-hard for the fragment
- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|r_{1}\right| r_{2}|(\alpha ; \beta)| \alpha^{\star} \mid(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Undecidability results

Within the class of all separated R-deterministic models

- SAT is Σ_{1}^{1}-hard for the fragment
- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|r_{1}\right| r_{2}|(\alpha ; \beta)| \alpha^{\star} \mid(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Within the class of all separated R-deterministic $*$-deterministic models

- SAT is Σ_{1}^{1}-hard for the fragment
- $\alpha, \beta::=\boldsymbol{a}|\phi ?| r_{1}\left|r_{2}\right|(\alpha ; \beta)\left|\alpha^{\star}\right|(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Undecidability results

Within the class of all separated serial models

- SAT is Σ_{1}^{1}-hard for the fragment
- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|r_{1}\right| r_{2}|(\alpha ; \beta)| \alpha^{\star} \mid(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Within the class of all separated serial $*$-deterministic models

- SAT is Σ_{1}^{1}-hard for the fragment
- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|r_{1}\right| r_{2}|(\alpha ; \beta)| \alpha^{\star} \mid(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Bibliography

Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.
Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific (2002).
Frias, M., Baum, G., Hæberer, A.: Fork algebras in algebra, logic and computer science. Fundamenta Informaticæ32 (1997) 1-25.

Frias, M., Veloso, P., Baum, G.: Fork algebras: past, present and future. Journal of Relational Methods in Computer Science 1 (2004) 181-216.

