Complexity

A simple separation logic

Andreas Herzig

University of Toulouse, IRIT-CNRS, France

Workshop ANR DynRes, Toulouse, May 2013

Complexity

Separation logic

$M \models \varphi_1 * \varphi_2$ iff there are M_1, M_2 such that 1) M can be separated into M_1 and M_2 2) $M_1 \models \varphi_1 \& M_2 \models \varphi_2$

- idea: separation \approx disjoint union of structures
- originally application: modular verification of programs
- in focus: particular memory structures
 - monoids (words)
 - pointer structures (heaps)
 - ...

Separation logic for knowledge representation

 $M \models \varphi_1 * \varphi_2$ iff there are M_1, M_2 such that

1) M can be separated into M_1 and M_2

2) $M_1 \models \varphi_1 \& M_2 \models \varphi_2$

- application here: knowledge representation
 - memory = models of classical propositional logic, description logics, modal logics, multi-valued logics,...
- separability = modularity
 - $\varphi \leftrightarrow (\varphi_1 * \varphi_2) = "\varphi$ consists in modules φ_1 and φ_2 "
 - modular querying (cf. description logic ontologies)
 - modular update and revision
- starting point: propositional logic

Separating classical valuations

 $V \models \varphi_1 * \varphi_2$ iff there are V_1, V_2 such that 1) V can be separated into V_1 and V_2 2) $V_1 \models \varphi_1 \& V_2 \models \varphi_2$

- V = valuation of classical propositional logic
 - set of propositional variables
 - total function from set of propositional variables $\mathbb P$ to $\{0,1\}$
- idea: V separable into V_1 and V_2 if $\{V_1, V_2\}$ partitions V
 - $\operatorname{dom}(V_1) \cap \operatorname{dom}(V_2) = \emptyset$
 - $\operatorname{dom}(V_1) \cup \operatorname{dom}(V_2) = \operatorname{dom}(V)$
 - \Rightarrow V₁, V₂ partial valuations
 - notation: small letters v₁, v₂

Two separation operators

$$V \models \varphi_1 * \varphi_2$$
 iff there are v_1, v_2 such that
1) { v_1, v_2 } partitions V
2) $v_1 \models \varphi_1 \& v_2 \models \varphi_2$

• two options to define satisfaction in partial valuations:

$$v \models \varphi \text{ iff } \begin{cases} V \models \varphi \text{ for every total extension } V \text{ of } v \\ V \models \varphi \text{ for some total extension } V \text{ of } v \end{cases}$$

where the total V is an extension of the partial v if V(p) = v(p) for every $p \in \text{dom}(v)$

Set Separation Logic SSL

Properties of Set Separation Logic SSL

decidable

● ≠ most propositional separation logics

[Larchey-Wendling&Galmiche, LICS 2010], [Brotherston&Kanowitch, LICS 2010]

- SAT problem is in PSPACE
 - polynomial translation to Dynamic Logic of Propositional Control DL-PA [Balbiani, Herzig&Troquard, LICS 2013]
- incompatible with standard accounts of update and revision
 - incompatible with AGM postulates for revision [Alchourrón, Gärdenfors&Makinson, 1985; Gärdenfors, 1988]
 - incompatible with KM postulates for update

[Katsuno&Mendelzon, 1990]

• the details are in the rest of the talk...

SSL

Complexity

Separability for belief change operations

Outline

2 Complexity

Separability for belief change operations

SSL

Complexity

Separability for belief change operations

Language

$$\varphi \quad ::= \quad p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \land \varphi \mid \varphi \mid \dot{\varphi} \mid \dot{\varphi} \mid \varphi$$

where p ranges over the set of propositional variables $\mathbb P$

- $\varphi \wedge \psi$ = " φ and ψ are statically separable"
 - = "update of $\varphi \land \psi$ can be done separately"
- $\varphi \dot{\parallel} \psi =$ " φ and ψ are dynamically separable"
 - = "update by $\varphi \wedge \psi$ can be done separately (in parallel)"

Complexity

Truth conditions

 $V \models p$ iff V(p) = 1 $V \models \neg \varphi$ iff $V \not\models \varphi$ $V \models \varphi_1 \land \varphi_2$ iff $V \models \varphi_1$ and $V \models \varphi_2$ $V \models \varphi_1 \land \varphi_2$ iff there is a partition $\{P_1, P_2\}$ of \mathbb{P} such that $V_1 \models \varphi_1$ for every extension V_1 of $V|_{P_1}$ and $V_2 \models \varphi_2$ for every extension V_2 of $V|_{P_2}$ $V \models \varphi_1 \parallel \varphi_2$ iff there is a partition $\{P_1, P_2\}$ of \mathbb{P} such that $V_1 \models \varphi_1$ for some extension V_1 of $V|_{P_1}$ and $V_2 \models \varphi_2$ for some extension V_2 of $V|_{P_2}$

Complexity

Truth conditions: examples

• for $p \neq q$, for V_{pq} valuation such that $V_{pq}(p) = V_{pq}(q) = 1$:

$$\begin{array}{ll} V_{pq} \models p \land q & V_{pq} \models p \parallel q \\ V_{pq} \not\models (\neg p) \land (\neg q) & V_{pq} \models (\neg p) \parallel (\neg q) \\ V_{pq} \models (p \lor q) \land (p \lor q) & \end{array}$$

SSL

Complexity

Validity

valid formula schemas:

$$\begin{array}{ll} \varphi_{1} \stackrel{\cdot}{\wedge} \varphi_{2} \leftrightarrow \varphi_{2} \stackrel{\cdot}{\wedge} \varphi_{1} & \varphi_{1} \stackrel{\|}{\parallel} \varphi_{2} \leftrightarrow \varphi_{2} \stackrel{\|}{\parallel} \varphi_{1} \\ \varphi_{1} \stackrel{\cdot}{\wedge} \varphi_{2} \rightarrow \varphi_{2} \stackrel{\wedge}{\wedge} \varphi_{1} & \varphi_{1} \stackrel{\wedge}{\wedge} \varphi_{2} \rightarrow \varphi_{2} \stackrel{\|}{\parallel} \varphi_{1} \\ \\ \top \stackrel{\cdot}{\wedge} \varphi \leftrightarrow \varphi & \top \stackrel{\|}{\parallel} \varphi \leftrightarrow \begin{cases} \top & \text{if } \varphi \text{ is satisfiable} \\ \bot & \text{otherwise} \end{cases} \end{array}$$

 \Rightarrow consistency expressible in the language of SSL

• inference rules:

$$\frac{\varphi \to \psi}{(\varphi \land \chi) \to (\psi \land \chi)} \qquad \qquad \frac{\varphi \to \psi}{(\varphi \parallel \chi) \to (\psi \parallel \chi)}$$

Validity: examples

• valid equivalences, for $p \neq q$:

SSL

$$p \dot{\wedge} p \leftrightarrow \bot \qquad p \dot{\parallel} p \leftrightarrow p$$

$$p \dot{\wedge} \neg p \leftrightarrow \bot \qquad p \dot{\parallel} \neg p \leftrightarrow \top$$

$$p \dot{\wedge} q \leftrightarrow p \wedge q \qquad p \dot{\parallel} q \leftrightarrow \top$$

$$(p \lor q) \dot{\wedge} (p \lor q) \leftrightarrow p \wedge q \qquad (p \lor q) \dot{\parallel} (p \lor q) \leftrightarrow \top$$

SSI

Complexity

Separability for belief change operations

Outline

Set Separation Logic

Separability for belief change operations

Complexity

Complexity: upper bounds

- upper bounds:
 - both φ₁ ∧ φ₂ and φ₁ || φ₂ can be polynomially expressed in the star-free fragment of dynamic logic of propositional assignments DL-PA
 - star-free DL-PA: satisfiability and model checking both in PSPACE [Balbiani, Herzig&Troquard, Lics13]
- Iower bounds: t.b.d.

SSI

Complexity

Separability for belief change operations

Outline

2 Complexity

Separability for belief change operations

Separability for belief change operations

- $\beta \circ \psi$ = result of incorporating the input ψ into the base β
 - • be a belief change operator
 - mainly studied from semantical perspective:

 $\beta \circ \psi$ = set of valuations

- aim: use the SSL operators to formulate new postulates for belief change operations
 - add to the AGM postulates for revision [Alchourrón, Gärdenfors&Makinson, 1985; Gärdenfors, 1988]
 - add to the KM postulates for update

[Katsuno&Mendelzon, 1990]

The basic belief change postulates

- $\|\varphi\| = \{V : V \models \varphi\}$ = set of valuations where φ is true
- common to AGM revision postulates and KM update postulates
 - insensitivity to syntax:

if $\|\beta_1\| = \|\beta_2\|$ and $\|\psi_1\| = \|\psi_2\|$ then $\beta_1 \circ \psi_1 = \beta_2 \circ \psi_2$ (RE)

- priority of input: $\beta \circ \psi \subseteq ||\psi||$
 - (SUCCESS)
- weak preservation postulate:
 - $\text{if } \|\beta\| \subseteq \|\psi\| \text{ then } \beta \circ \psi = \|\beta\| \qquad \qquad (\mathsf{PRES}_w)$
- \Rightarrow "basic postulates for belief change"

Belief change operations and language splitting

• the drastic update operation

$$eta \circ \psi = egin{cases} ||eta|| & ext{ if } ||eta|| \subseteq ||\psi|| \ ||\psi|| & ext{ otherwise } \end{cases}$$

satisfies the KM postulates

1

• the drastic revision operation

$$eta \circ \psi = egin{cases} ||eta \wedge \psi|| & ext{ if } ||eta|| \cap ||\psi||
eq \emptyset \ ||\psi|| & ext{ otherwise } \end{cases}$$

satisfies the AGM postulates

• further postulate [Parikh 1999; Kourousias&Makinson 2007]:

$$(\mathsf{REL}) \quad (\beta_1 \land \beta_2) \circ \psi = (\beta_1 \circ \psi) \cap (\beta_2 \circ \psi) \quad \text{ if } \mathbb{P}_{\beta_1} \cap \mathbb{P}_{\beta_2} = \emptyset$$

 \Rightarrow refers to the syntax: splitting of the language of $\beta_1 \land \beta_2$

drastic operations violate REL

Separation-based belief change operations

- idea: strengthen REL using the separation operators
- static version:

 $(\mathsf{REL}_s) \quad (\beta_1 \stackrel{\cdot}{\wedge} \beta_2) \circ \psi \quad = \quad (\beta_1 \circ \psi) \cap (\beta_2 \circ \psi)$

 \Rightarrow when β_1 and β_2 are statically separable then they can be updated separately

• dynamic version:

$$(\mathsf{REL}_d) \quad \beta \circ (\psi_1 \, \| \, \psi_2) = (\beta \circ \psi_1) \circ \psi_2 \\ = (\beta \circ \psi_2) \circ \psi_1$$

 \Rightarrow when ψ_1 and ψ_2 are dynamically separable then the update can be performed in parallel (interleaving)

violated by any AGM revision operation and and KM update operation...

Static relevance

Proposition

There is no operation \circ satisfying both the basic belief change postulates and REL_s.

Proof.

Suppose \circ satisfies the basic belief change postulates and REL_s. Consider base $\beta = (p \lor q) \land (p \lor q)$ and input $\psi = p \lor q$. As β is equivalent to $p \land q$:

$$\begin{array}{ll} \beta \circ \psi & = & (p \lor q) \dot{\land} (p \lor q) \circ p \lor q \\ & = & p \land q \circ p \lor q & (by \ \mathsf{RE}) \\ & = & \|p \land q\| & (by \ \mathsf{PRES}_w) \end{array}$$

Incompatible with REL_s:

$$\begin{split} \beta \circ \psi &= (p \lor q) \dot{\land} (p \lor q) \circ p \lor q \\ &= p \lor q \circ p \lor q \cap p \lor q \circ p \lor q \quad \text{(by REL}_s) \\ &= \|p \lor q\| \cap \|p \lor q\| \quad \text{(by PRES}_w) \\ &= \|p \lor q\| \end{aligned}$$

Dynamic relevance

Proposition

There is no operation \circ satisfying both the basic belief change postulates and REL_d.

Proof.

Suppose \circ satisfies the KM postulates and REL_d. Consider base $\beta = \neg p$ and input $\psi = \neg p \mid p$. As ψ is equivalent to \top :

$\beta \circ \psi$	=	¬ <i>p</i> ∘ ¬ <i>p</i> ∦ <i>p</i>	
	=	$\neg p \circ \top$	(by RE)
	=	$\ \neg p\ $	(by PRES _w)

Incompatible with REL_d:

$$\begin{array}{rcl} \beta \circ \psi & = & \neg p \circ \neg p \, \dot{\parallel} \, p \\ & = & (\neg p \circ \neg p) \diamond p & (\text{by REL}_d) \\ & = & \neg p \circ p & (\text{by PRES}_w) \\ & \subseteq & \|p\| & (\text{by SUCCESS}) \end{array}$$

Incompatibility because set of $\neg p$ valuations non empty

Complexity

Separability for belief change operations

Conclusion

- SSL = set separation logic
 - resources separable: $\beta_1 \land \beta_2$
 - updates separable: $\psi_1 \parallel \psi_2$
- properties:
 - decidable
 - model checking, satisfiability checking in PSPACE
- open:
 - PSPACE upper bound tight?
 - axiomatisation?
 - how integrate implicational connective -- of separation logic?
- cannot be used to enhance the AGM and KM postulates
- perspective: extension of SSL by DL-PA programs