
Modelling of concurrent processes in DMBI logic

Modelling of concurrent processes in DMBI logic

J.R. Courtault - D. Galmiche

ANR DynRes Meeting - Nancy

May 2013

Introduction - resource logics

Resources

Resource is a key notion in computer science:

- Memory

- Processes

- Messages

Different concerns about resources:

- Location

- Ownership

- Access to

- Consumption of

I Study of resources and related notions through logics

Introduction - resource logics

Bunched Implications (BI) logic (O’Hearn and Pym 1999, Pym
2002)

BI =

{
∧,∨,→,>,⊥ (additives)
∗,−∗, I (multiplicatives)

BI (intuitionistic additives) , BBI (classical additives)

Sequents with bunches (trees of formulae where internal nodes

are ”,” or ”;”):
Γ, φ ` ψ

Γ ` φ−∗ ψ
Γ;φ ` ψ

Γ ` φ→ ψ

Bunches can be viewed as areas of a model:

A, (B; C),A A BC A

Resources are areas and propositional symbols are properties of
resources (areas)

BI and BBI focus on separation (,) / sharing (;)

Introduction - resource logics

Separation logics

BI and BBI logical kernels of separation logics

Some separation logics:

- PL: Pointer (Separation) Logic with (x 7→ a, b)
(O’Hearn et al. 2001)

- BI-Loc: Separation Logic with locations (Biri-Galmiche 2007)

- MBI: Separation Logic with modalities for processes
(R,E

a−→ R ′,E ′) (Pym-Toft 2006)

- DBI: Separation Logic with modalities for dynamic properties of
resources (Courtault-Galmiche 2013)

I Study of dynamics in resource/separation logics

Introduction - resource logics

Dynamics in resource logics

What are systems with dynamic resources?

- Systems that transform resources (producers / consumers)

- Systems that modify resource properties (value of cells of a
cellular automata): no resource production/consumption

Resource logics and dynamics

- BI: Properties on resources = no dynamics

- MBI (R,E
a−→ R ′,E ′): Dynamics is resource transformation

- DBI (BI + ♦, �): Dynamic properties of resources

Introduction - MBI logic

MBI and SCRP (Pym-Tofte 2006)

SCRP: Synchronous Calculus of Resources and Processes

- Processes: E ::= 0 | X | a : E | E + E | E × E | νR.E | fixiX .E

- SCRP transitions (some rules):

(µ(a, R) ↓)
R, a : E

a−→ µ(a,R),E
R,E

a−→ R ′,E ′ S ,F
b−→ S ′,F ′

(R ◦ S ↓)

R ◦ S ,E × F
a#b−−→ R ′ ◦ S ′,E ′ × F ′

MBI: BI/BBI + modalities (〈a〉, [a], 〈a〉ν , [a]ν)

Forcing relation:

- R,E � φ ∗ ψ iff ∃R1,R2,E1,E2 · R = R1 ◦ R2 and E ∼ E1 × E2

and R1,E1 � φ and R2,E2 � ψ

- R,E � 〈a〉φ iff ∃R ′,E ′ · R,E a−→ R ′,E ′ and R ′,E ′ � φ

- R,E � 〈a〉νφ iff ∃T ,R ′,E ′ · R ◦ T ,E
a−→ R ′,E ′ and R ′,E ′ � φ

Introduction - MBI logic
An example: mutual exclusion

Processes:

E
def
= nc : E + critical : Ecritical

Ecritical
def
= critical : Ecritical + critical : E

Minimum resources required for the action: ρ(nc) = {e} and
ρ(critical) = {R}

The µ function: µ(a,R) = R for any a action

The action critical#critical is never performed:
R,E × E � [critical#critical]⊥

Remarks:
- Only a calculus with bunches and without completeness

- R,E × E � [critical#critical]⊥ does not mean that in any
reachable state, couple (resource, process), it is impossible to
execute two concurrent critical actions (need of ♦ and �)

Introduction - DBI logic

DBI logic

Dynamic modal BI

- BI with modalities ♦ and �

- Dynamic resource properties

- A calculus that is sound and complete

DBI models:

- a resource monoid: resources

- a graph: states and a state preorder (reachability)

Forcing relation:

- r , s � φ ∗ ψ iff ∃r1, r2 · r1 • r2 v r and r1, s � φ and r2, s � ψ
(remark: ∗ separates only the resource r)

- r , s � ♦φ iff ∃s ′ · s � s ′ and r , s ′ � φ

Introduction - DBI logic

An example: properties on states of webservices

A set of composed webservices W = {W0,W1,W2,W3, ...}

A model:

W0 :

W1 :
.........

t0

id

id

t1

ru

id

t2

ru

ru

t3

ru

ru

t4

id

ru

t5

id

id

(id: idle)

(ru: running)

An interpretation J.K:

- JPidleK = {(S , ti) | ∃Wi ∈ S ·Wi is idle at time ti}

- JPrunning K = {(S , ti) | ∃Wi ∈ S ·Wi is running at time ti}

where S ⊆W is a set of webservices.

For example: S , t � Pidle if there is at least a webservice in S
that is idle at time t

Introduction - DBI logic
An example: properties on states of webservices

W0 :

W1 :
.........

t0

id

id

t1

ru

id

t2

ru

ru

t3

ru

ru

t4

id

ru

t5

id

id

(id: idle)

(ru: running)

Properties that can be expressed:

- {W0,W1}, t1 � Pidle

- {W0,W1}, t1 � Pidle ∧ Pidle but {W0,W1}, t1 6� Pidle ∗ Pidle

- {W0,W1}, t0 � Pidle ∗ Pidle

- {W0,W1}, t0 � (Pidle ∗ Pidle) ∧ ♦(Pidle ∗ Prunning)

Remark: resource transformation cannot be express in DBI
(it is not possible to model the messages that are produced /
exchanged by the webservices)

Introduction - results

Some results

DMBI logic

- captures resource transformation (≈ MBI)

- includes modalities ♦ and � (≈ DBI)

- restriction to only one process (6≈ MBI)

Semantics: µ-dynamic resource monoids

Expressiveness: DMBI models can capture n concurrent
processes that manipulate resources
(but no production of processes 6≈ MBI)

Proof theory: a tableaux method that is sound and complete

Counter-model extraction

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Logic - Language

Language

DMBI = BBI + 〈a〉 [a] ♦ �:

φ ::= p | ⊥ | I | φ→ φ | φ ∗ φ | φ−∗ φ | 〈a〉φ | [a]φ | ♦φ | �φ

Syntactic sugar:

¬φ ≡ φ→ ⊥ > ≡ ¬⊥

φ ∨ ψ ≡ ¬φ→ ψ φ∧ψ ≡ ¬(φ→ ¬ψ)

[a]φ ≡ ¬〈a〉¬φ �φ ≡ ¬♦¬φ

DMBI Logic - Semantics

Semantics

Resource monoid: R = (R, •, e)

- R is a set of resources

- e ∈ R is the unit resource

- • : R × R → R such that, for any r1, r2, r3 ∈ R:

- Neutral element: r1 • e = e • r1 = r1

- Commutativity: r1 • r2 = r2 • r1

- Associativity: r1 • (r2 • r3) = (r1 • r2) • r3

Remark: • is total because a resource is viewed as a multiset of
atomic resources

DMBI Logic - Semantics

Semantics

Action monoid (non commutative): A = (Act,�, 1)

- Act is a set of actions

- 1 ∈ Act is the unit action

- � : Act × Act → Act such that, for any a1, a2, a3 ∈ Act:

- Neutral element: a1 � 1 = 1� a1 = a1

- Associativity: a1 � (a2 � a3) = (a1 � a2)� a3

Remark: actions are viewed as lists of atomic actions

DMBI Logic - Semantics

Semantics

A µ-dynamic resource monoid: M = (R,A, S , ||·〉〉, µ)

- S is a set of states

- ||·〉〉 ⊆ S × Act × S , such that:

- ||·〉〉-unit: s1 ||1〉〉 s1

- ||·〉〉-composition: if s1 ||a1〉〉 s2 and s2 ||a2〉〉 s3 then s1 ||a1 � a2〉〉 s3

- µ : Act × R ⇀ R, such that:

- µ-unit: µ(1, r) ↓ and µ(1, r) = r

- µ-composition: if µ(a1, r) ↓ and µ(a2, µ(a1, r)) ↓ then
µ(a1 � a2, r) ↓ and µ(a1 � a2, r) = µ(a2, µ(a1, r))

Denotations:

- r , s
a−→ r ′, s ′ iff µ(a, r) ↓, µ(a, r) = r ′ and s ||a〉〉 s ′

- r , s r ′, s ′ iff r , s
a0−→ r1, s1

a1−→ ...
an−1−−−→ rn, sn

an−→ r ′, s ′

DMBI Logic - Semantics
Semantics

µ-Model: K = (M, J·K, | · |,�K)

- r , s �K p iff (r , s) ∈ JpK

- r , s �K ⊥ never

- r , s �K I iff r = e

- r , s �K φ→ ψ iff r , s �K φ⇒ r , s �K ψ

- r , s �K φ ∗ ψ iff ∃r1, r2 ∈ R · r = r1 • r2 and r1, s �K φ and
r2, s �K ψ

- r , s �K φ−∗ ψ iff ∀r ′ ∈ R · r ′, s �K φ⇒ r • r ′, s �K ψ

- r , s �K 〈a〉φ iff ∃r ′ ∈ R · ∃s ′ ∈ S · r , s |a|−→ r ′, s ′ and r ′, s ′ �K φ

- r , s �K ♦φ iff ∃r ′ ∈ R · ∃s ′ ∈ S · r , s r ′, s ′ and r ′, s ′ �K φ

Validity: φ is valid iff r , s �K φ for any K, r and s

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Logic - Expressiveness

Concurrent processes modelling

A user gives a description D of n concurrent processes
(P1, ...,Pn), where n > 1:

D = (Ratom,Actatom, µpre , µpost , {P1, ...,Pn}), such that:

- Ratom is a set of atomic resources

- Actatom is a set of atomic actions

- µpre : Actatom →M(Ratom)

⇒ µpre(a) is the multiset of resources consumed when
a process performs the action a

- µpost : Actatom →M(Ratom)

⇒ µpost(a) is the multiset of resources produced when
a process performs the action a

- Pi = (Si ,_Pi) are processes: Si is the set of states of Pi and
_Pi⊆ Si × Actatom × Si is the transition relation of Pi

I We aim to construct a µ-model that models D

DMBI Logic - Expressiveness

Concurrent processes modelling - Resources

Denotations for resources:

- M(Ratom) is the set of all multisets over Ratom

(functions Ratom → N)

- e is the empty multisets (∀r ∈ Ratom · e(r) = 0)

- R1 ≤ R2 iff R1(r) 6 R2(r) for all r ∈ Ratom

- R1 + R2 = R3 such that R3(r) = R1(r) + R2(r) for all r ∈ Ratom

- R1 − R2 = R3 such that R3(r) = R1(r)− R2(r) for all r ∈ Ratom

Remark: R1 − R2 is defined iff R2 ≤ R1.

DMBI Logic - Expressiveness

Concurrent processes modelling - System transitions

Two denotations for behaviour of the system:

- R

s1

a1_P1 s ′1
...

...

sn
an_Pn s ′n

R ′ iff

µpre(a1) + ...+ µpre(an) ≤ R and
R ′ = R − µpre(a1)− ...− µpre(an) + µpost(a1) + ...+ µpost(an)

and si
ai_Pi s ′i for all i ∈ {1, ..., n}.

- R

s1 99KP1 s ′1
...

...
sn 99KPn s ′n

R ′ iff

R

s1

a11_P1 s11
...

...

sn
a1n_Pn s1n

R1 ... Rk−1

sk−11

ak1_P1 s ′1
...

...

sk−1n

akn_Pn s ′n

R ′

DMBI Logic - Expressiveness

Concurrent processes modelling - Synchronous/Asynchronous

Synchronous VS asynchronous processes:

- At each transition all processes perform an action:

⇒ synchronous processes

- How to model asynchronous processes?

- By considering an atomic action skip

- µpre(skip) = µpost(skip) = e

- si
skip
_Pi si for all processes Pi and all states si ∈ Si

- Example: R

s1

a1_P1 s ′1

s2
skip
_P2 s2

s3
a3_P3 s ′3

R ′

⇒ only P1 and P3 perform an action in this step

DMBI Logic - Expressiveness
Concurrent processes modelling - Actions

Denotations for actions:

- We define Act#atom = {a1#...#an | a1, ..., an ∈ Actatom}

⇒ a1#a2 is a concurrent atomic action where P1 performs a1
and P2 performs a2.

- We define L(Act#atom) the set of all lists built on Act#atom:

For example [a1#a2#a3; a′1#a′2#a′3] is an action that consists
to perform a1#a2#a3 and then a′1#a′2#a′3

- [] is the empty list

- ⊕ is the concatenation of lists

Propositions

1 R = (M(Ratom),+, e) is a resource monoid.

2 A = (L(Act#atom),⊕, []) is an action monoid

DMBI Logic - Expressiveness
Concurrent processes modelling - States and the µ function

Denotations for states:

- S# = {s1#...#sn | si ∈ Si for any 1 6 i 6 n}

⇒ s1#s2 is the state such that P1 is in state s1 and P2 is in
state s2.

Denotations for the µ function:

- µ# : Act#atom ×M(Ratom) ⇀M(Ratom)

µ#(a1#...#an,R) =

↑ if µpre(a1) + ...+ µpre(an) 6≤ R
R − µpre(a1)− ...− µpre(an)

+µpost(a1) + ...+ µpost(an) otherwise

- µlist : L(Act#atom)×M(Ratom) ⇀M(Ratom)

µlist(L,R) =

R if L = []
↑ if L = [A1; ...;Ak] and µ#(A1,R) ↑
µlist([A2; ...;Ak], µ#(A1,R)) where L = [A1; ...;Ak]

DMBI Logic - Expressiveness

Concurrent processes modelling - State/resource relation

Denotations for the relation on states and resources:

- |·〉# : S# × Act#atom × S#

s1#...#sn |a1#...#an〉# s ′1#...#s ′n iff si
ai_Pi s

′
i for all 1 6 i 6 n

- |·〉 list : S# × L(Act#atom)× S#

S |[A1; ...;Ak]〉 list S ′ iff S |A1〉# S1 |A2〉# ... |Ak−1〉# Sk−1 |Ak〉# S ′

Lemma

Let D = (Ratom,Actatom, µpre , µpost , {P1, ...,Pn}), where
Pi = (Si ,_Pi

).
M = (R,A, S#, |·〉 list , µlist), where R = (M(Ratom),+, e) and

where A = (L(Act#atom),⊕, []) is a µ-DRM.

DMBI Logic - Expressiveness

Concurrent processes modelling - Reachability/Satisfiability

Denotations:

- J·K : Prop → P(M(Ratom)× S#)

JriK = {({ri}, s) | s ∈ S#}

- | · | : SAct → L(Act#atom)

|a1#...#an| = [a1#...#an]

- ·̂ : M(Ratom)→ L:

R̂ =

{
I if R = e

r1 ∗ ... ∗ rk if R = {r1, ..., rk}

DMBI Logic - Expressiveness

Concurrent processes modelling - Reachability/Satisfiability

Lemma

R

s1

a1_P1 s ′1
...

...

sn
an_Pn s ′n

R ′ iff R, s1#...#sn
[a1#...#an]−−−−−−−→ R ′, s ′1#...#s ′n

Lemma

R

s1 99KP1 s ′1
...

...
sn 99KPn s ′n

R ′ iff R, s1#...#sn R ′, s ′1#...#s ′n

DMBI Logic - Expressiveness

Concurrent processes modelling - Reachability/Satisfiability

Theorem

R

s1

a1_P1 s ′1
...

...

sn
an_Pn s ′n

R ′ iff R, s1#...#sn �K 〈a1#...#an〉R̂ ′

Theorem

R

s1 99KP1 s ′1
...

...
sn 99KPn s ′n

R ′ iff R, s1#...#sn �K ♦R̂ ′

DMBI Logic - Expressiveness

Concurrent processes modelling - Mutual exclusion

Mutual exclusion (revisited):

D = (Ratom,Actatom, µpre , µpost , {P1,P2}), where:

- Ratom = {J}

- Actatom = {anc , ac , ap, av}
- µpre is defined by:

- µpre(anc) = µpre(ac) = µpre(av) = e

- µpre(ap) = J

- µpost is defined by:

- µpost(anc) = µpost(ac) = µpost(ap) = e

- µpost(av) = J

- P1 = (S1,_P1) and P2 = (S2,_P2) such that:

- S1 = S2 = {snc , sc}
- For any i ∈ {1, 2}, we have:

snc
anc_Pi snc snc

ap
_Pi sc sc

ac_Pi sc sc
av_Pi snc

DMBI Logic - Expressiveness
Concurrent processes modelling - Mutual exclusion

Mutual exclusion (revisited):

- We construct M = (R,A,S#, |·〉 list , µlist), where

R = (M(Ratom),+, e) and where A = (L(Act#atom),⊕, [])

- ”After performing any succession of actions, the processes can
not perform together a critical action”:

{J}, snc#snc �K �[ac#ac]⊥

- ”It is impossible to reach a state such that more than one token
is available”:

{J}, snc#snc �K ¬♦(J ∗ J ∗ >)

We observe that DMBI:

- captures resource transformation (6≈ DBI) (≈ MBI)

- expresses properties on any reachable states (≈ DBI) (6≈ MBI)

- does not model capture process production (6≈ MBI)

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Proof theory - Tableaux method

An extension of BI calculus (Galmiche-Méry-Pym 2005) based on
constrained set of statements (CSS in Larchey 2012)

Resource labels (R), action labels (Act) and state labels (S)

Resource constraints (=), µ-constraints (µ) and transition
constraints (||.〉〉)

Signed formulae: Sφ : (x , u)

Branches are denoted 〈F , C〉 where C is a set of resource,
transition and µ constraints

Assertions/requirements

DMBI Proof theory - Tableaux method

Labels

Resource labels (Lr):

X ::= 1r | ci | X ◦ X

where ci ∈ γr = {c1, c2, ...} and ◦ is a function on Lr that is
associative, commutative and 1r is its unit. x ◦ y is denoted xy .

Action labels (La):

X ::= 1a | ai | di | X � X

where ai ∈ SAct , di ∈ γa = {d1, d2, ...}, SAct ∩ γa = ∅ and � is
a function on La that is associative (not commutative) and 1a
is its unit. f � g is denoted fg .

State labels (Ls): Ls = {l1, l2, ...}.

DMBI Proof theory - Tableaux method

Constraints

Resource constraints:

- encode equality on resources.

- x ∼ y where x and y are resource labels.

µ-constraints:

- encode the function µ.

- x
f
� y where x and y are resource labels and f is an action

label.

Transition constraints:

- Encode the function ||·〉〉.

- u
f
� v where u and v are state labels and f is an action label.

DMBI Proof theory - Tableaux method

Constraint closure

Rules that product resource constraints:

〈1r 〉
1r ∼ 1r

x ∼ y
〈sr 〉y ∼ x

xy ∼ xy
〈dr 〉x ∼ x

x ∼ y y ∼ z
〈tr 〉x ∼ z

x ∼ x ′ y ∼ y ′
〈gr 〉

xy ∼ x ′y ′

x
f
� y x

f
� z

〈kr 〉y ∼ z
x

f
� y

〈ar1〉x ∼ x

DMBI Proof theory - Tableaux method

Constraint closure

Rules that product µ-constraints:

x ∼ x 〈1µ〉
x

1a
� x

x
f
� y y

g
� z

〈tµ〉
x

fg
� z

x
f
� y x ∼ x ′

〈kµ1〉
x ′

f
� y

x
f
� y y ∼ y ′

〈kµ2〉
x

f
� y ′

Rules that product transition constraints:

u
f
� v 〈1t1〉

u
1a
� u

u
f
� v 〈1t2〉

v
1a
� v

u
f
� v v

g
� w 〈tt〉

u
fg
� w

DMBI Tableaux method

Modal rules

Assertion rules:
Introduction of new labels and assertions (or constraints)

T〈f 〉φ : (x , u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci , li)}, {x
f
� ci , u

f
� li}〉

T♦φ : (x , u) ∈ F
〈T♦〉

〈{Tφ : (ci , li)}, {x
di
� ci , u

di
� li}〉

Requirement rules:
Conditions that must be verified in the closure of constraints

F〈f 〉φ : (x , u) ∈ F and x
f
� y ∈ C and u

f
� v ∈ C

〈F〈−〉〉
〈Fφ : (y , v), ∅〉

F♦φ : (x , u) ∈ F and x
f
� y ∈ C and u

f
� v ∈ C

〈F♦〉
〈{Fφ : (y , v)}, ∅〉

DMBI Tableaux method

Definition: closed branch

A CSS (branch) 〈F , C〉 is closed iff one of these conditions holds:

Tφ : (x , u) ∈ F , Fφ : (y , u) ∈ F and x ∼ y ∈ C
FI : (x , u) ∈ F and 1r ∼ x ∈ C
T⊥ : (x , u) ∈ F

Definition: µ-proof

A µ-proof for a formula φ is a µ-tableau for φ which is closed.

Theorem: soundness

If there exists a µ-proof for a formula φ then φ is valid.

Theorem: completeness

If a formula φ is valid then there is a µ-proof for φ.

DMBI Tableaux method - an example

I How to prove φ ≡ (I−∗ 〈a〉〈b〉P)→ ♦P ?

Step 1: Initialization

[F]

F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

DMBI Tableaux method - an example

[F]

F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

Fφ→ ψ : (x , u) ∈ F
〈F→〉

〈{Tφ : (x , u),Fψ : (x , u)}, ∅〉

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

FI : (1r , l1) T〈a〉〈b〉P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

Tφ−∗ ψ : (x , u) ∈ F and xy ∼ xy ∈ C
〈T−∗〉

〈{Fφ : (y , u)}, ∅〉 | 〈{Tψ : (xy , u)}, ∅〉

Remark: c1 ◦ 1r = c1

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

FI : (1r , l1)
√

3 T〈a〉〈b〉P : (c1, l1)

T〈b〉P : (c2, l2)

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

T〈f 〉φ : (x , u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci , li)}, {x
f
� ci , u

f
� li}〉

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

FI : (1r , l1)
√

3 T〈a〉〈b〉P : (c1, l1)

√
4 T〈b〉P : (c2, l2)

TP : (c3, l3)

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

c2
b
� c3 l2

b
� l3

T〈f 〉φ : (x , u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci , li)}, {x
f
� ci , u

f
� li}〉

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)√

5 F♦P : (c1, l1)

FI : (1r , l1)
√

3 T〈a〉〈b〉P : (c1, l1)

√
4 T〈b〉P : (c2, l2)

TP : (c3, l3)

FP : (c3, l3)

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

c2
b
� c3 l2

b
� l3

F♦φ : (x , u) ∈ F and x
f
� y ∈ C and u

f
� v ∈ C

〈F♦〉
〈{Fφ : (y , v)}, ∅〉

c1
a
� c2 c2

b
� c3 〈tµ〉

c1
ab
� c3

l1
a
� l2 l2

b
� l3 〈tt〉

l1
ab
� l3

DMBI Tableaux method - an example
Step 2: Application of rules

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)√

5 F♦P : (c1, l1)

FI : (1r , l1)

×

√
3 T〈a〉〈b〉P : (c1, l1)

√
4 T〈b〉P : (c2, l2)

TP : (c3, l3)

FP : (c3, l3)

×

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

c2
b
� c3 l2

b
� l3

The formula (I−∗ 〈a〉〈b〉P)→ ♦P is valid

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Counter-model extraction

Counter-model extraction

Definition: Hintikka CSS

A Hintikka CSS 〈F , C〉 is a unclosed branch such that ”all
information has been extracted”:

1 Tφ : (x , u) 6∈ F or Fφ : (y , u) 6∈ F or x ∼ y 6∈ C

2-12 ...

13 If T♦φ : (x , u) ∈ F then ∃y ∈ Lr , ∃f ∈ La, ∃v ∈ Ls , x
f
� y ∈ C and

u
f
� v ∈ C and Tφ : (y , v) ∈ F

14 If F♦φ : (x , u) ∈ F then ∀y ∈ Lr , ∀f ∈ La, ∀v ∈ Ls , (x
f
� y ∈ C and

u
f
� v ∈ C)⇒ Fφ : (y , v) ∈ F

Lemma: counter-model extraction

A counter-model can be extracted from a Hintikka branch.

DMBI Counter-model extraction
Counter-model extraction

Function Ω

Let 〈F , C〉 be a Hintikka CSS. Ω(〈F , C〉) = (M, J·K, | · |,�K), such
that:

R = Dr (C)/ ∼ S = As(C) Act = Da(C) ∪ {α} (where α 6∈ Da(C))

e = [1r]

1 = 1a

[x] • [y] = [x ◦ y]

µ(a, [x]) =

{
↑ if {y | x

a
� y ∈ C} = ∅

{y | x
a
� y ∈ C} otherwise

s1 ||f 〉〉 s2 iff s1
f
� s2 ∈ C

For all a1, a2 ∈ Act, a1 � a2 =

{
a1 � a2 if a1 � a2 ∈ Da(C)
α otherwise

For all a ∈ SAct , |a| =

{
a if a ∈ Da(C)
α otherwise

([x], s) ∈ JPK iff ∃y ∈ Lr , x ∈ [y] and TP : (y , s) ∈ F

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

Conclusions

Conclusions

A modal extension of BBI for resource transformations

- That captures resource transformations (≈ MBI)

- That includes modalities ♦ and � (≈ DBI)

- That has a sound and complete calculus with a countermodel
extraction method

- That can express properties resources produced by n concurrent
processes that manipulate these resources

Future works

Future works

Study is DMBI can capture process production

Study extension of DMBI with locations and provide a sound
and complete calculus

Study other extension to express properties on:

- Webservices

- Protocols

- ...

	Language and semantics
	Expressiveness
	Tableaux method
	Counter-model extraction
	Conclusions - Perspectives

