## Modelling of concurrent processes in DMBI logic

J.R. Courtault - D. Galmiche

ANR DynRes Meeting - Nancy
May 2013

## Introduction - resource logics

## Resources

■ Resource is a key notion in computer science:

- Memory
- Processes
- Messages

■ Different concerns about resources:

- Location
- Ownership
- Access to
- Consumption of
- Study of resources and related notions through logics


## Introduction - resource logics

Bunched Implications (BI) logic (O'Hearn and Pym 1999, Pym 2002)

■ $\mathbf{B I}=\left\{\begin{array}{l}\wedge, \vee, \rightarrow, \top, \perp \text { (additives) } \\ *, \rightarrow, \mathrm{I} \text { (multiplicatives) }\end{array}\right.$
BI (intuitionistic additives), BBI (classical additives)

- Sequents with bunches (trees of formulae where internal nodes

$$
\text { are "," or ";"): } \frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi} \quad \frac{\Gamma ; \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi}
$$

- Bunches can be viewed as areas of a model:

$$
A,(B ; C), A \rightsquigarrow \begin{array}{|c:c:c|}
\hline A & B C & A \\
\hline
\end{array}
$$

- Resources are areas and propositional symbols are properties of resources (areas)
- BI and BBI focus on separation (, ) / sharing (;)


## Introduction - resource logics

## Separation logics

■ BI and BBI logical kernels of separation logics
■ Some separation logics:

- PL: Pointer (Separation) Logic with $(x \mapsto a, b)$ (O'Hearn et al. 2001)
- BI-Loc: Separation Logic with locations (Biri-Galmiche 2007)
- MBI: Separation Logic with modalities for processes ( $R, E \xrightarrow{a} R^{\prime}, E^{\prime}$ ) (Pym-Toft 2006)
- DBI: Separation Logic with modalities for dynamic properties of resources (Courtault-Galmiche 2013)
- Study of dynamics in resource/separation logics


## Introduction - resource logics

## Dynamics in resource logics

■ What are systems with dynamic resources?

- Systems that transform resources (producers / consumers)
- Systems that modify resource properties (value of cells of a cellular automata): no resource production/consumption
- Resource logics and dynamics
- BI: Properties on resources $=$ no dynamics
- MBI ( $R, E \xrightarrow{a} R^{\prime}, E^{\prime}$ ): Dynamics is resource transformation
- DBI (BI + $\diamond, \square)$ : Dynamic properties of resources


## Introduction - MBI logic

## MBI and SCRP (Pym-Tofte 2006)

- SCRP: Synchronous Calculus of Resources and Processes
- Processes: $E::=0|X| a: E|E+E| E \times E|\nu R . E| f_{i x} X . E$
- SCRP transitions (some rules):

$$
\overline{R, a: E \xrightarrow{a} \mu(a, R), E}(\mu(a, R) \downarrow)_{R, E \xrightarrow{a} R^{\prime}, E^{\prime} \quad S, F \xrightarrow{b} S^{\prime}, F^{\prime}}^{R \circ S, E \times F \xrightarrow{a \# b} R^{\prime} \circ S^{\prime}, E^{\prime} \times F^{\prime}}(R \circ S \downarrow)
$$

■ MBI: BI/BBI + modalities $\left(\langle a\rangle,[a],\langle a\rangle_{\nu},[a]_{\nu}\right)$

- Forcing relation:
- $R, E \vDash \phi * \psi$ iff $\exists R_{1}, R_{2}, E_{1}, E_{2} \cdot R=R_{1} \circ R_{2}$ and $E \sim E_{1} \times E_{2}$ and $R_{1}, E_{1} \vDash \phi$ and $R_{2}, E_{2} \vDash \psi$
- $R, E \vDash\langle a\rangle \phi$ iff $\exists R^{\prime}, E^{\prime} \cdot R, E \xrightarrow{a} R^{\prime}, E^{\prime}$ and $R^{\prime}, E^{\prime} \vDash \phi$
- $R, E \vDash\langle a\rangle_{\nu} \phi$ iff $\exists T, R^{\prime}, E^{\prime} \cdot R \circ T, E \xrightarrow{a} R^{\prime}, E^{\prime}$ and $R^{\prime}, E^{\prime} \vDash \phi$


## Introduction - MBI logic

## An example: mutual exclusion

■ Processes:
$E \stackrel{\text { def }}{=} n c: E+$ critical $: E_{\text {critical }}$
$E_{\text {critical }} \stackrel{\text { def }}{=}$ critical $: E_{\text {critical }}+$ critical $: E$

- Minimum resources required for the action: $\rho(n c)=\{e\}$ and $\rho($ critical $)=\{R\}$
- The $\mu$ function: $\mu(a, R)=R$ for any a action
- The action critical\#critical is never performed:
$R, E \times E \vDash[$ critical\#critical $] \perp$
- Remarks:
- Only a calculus with bunches and without completeness
- $R, E \times E \vDash[$ critical\#critical $] \perp$ does not mean that in any reachable state, couple (resource, process), it is impossible to execute two concurrent critical actions (need of $\diamond$ and $\square$ )


## Introduction - DBI logic

## DBI logic

- Dynamic modal BI
- BI with modalities $\diamond$ and $\square$
- Dynamic resource properties
- A calculus that is sound and complete
- DBI models:
- a resource monoid: resources
- a graph: states and a state preorder (reachability)
- Forcing relation:
- $r, s \vDash \phi * \psi$ iff $\exists r_{1}, r_{2} \cdot r_{1} \bullet r_{2} \sqsubseteq r$ and $r_{1}, s \vDash \phi$ and $r_{2}, s \vDash \psi$ (remark: * separates only the resource $r$ )
- $r, s \vDash \diamond \phi$ iff $\exists s^{\prime} \cdot s \preceq s^{\prime}$ and $r, s^{\prime} \vDash \phi$


## Introduction - DBI logic

## An example: properties on states of webservices

- A set of composed webservices $W=\left\{W_{0}, W_{1}, W_{2}, W_{3}, \ldots\right\}$
- A model:

- An interpretation $\llbracket . \rrbracket$ :

$$
\begin{aligned}
& -\llbracket P_{i d l e} \rrbracket=\left\{\left(S, t_{i}\right) \mid \exists W_{i} \in S \cdot W_{i} \text { is idle at time } t_{i}\right\} \\
& \text { - } \llbracket P_{\text {running }} \rrbracket=\left\{\left(S, t_{i}\right) \mid \exists W_{i} \in S \cdot W_{i} \text { is running at time } t_{i}\right\}
\end{aligned}
$$

where $S \subseteq W$ is a set of webservices.
For example: $S, t \vDash P_{\text {idle }}$ if there is at least a webservice in $S$ that is idle at time $t$

## Introduction - DBI logic

## An example: properties on states of webservices



- Properties that can be expressed:
- $\left\{W_{0}, W_{1}\right\}, t_{1} \vDash P_{\text {idle }}$
- $\left\{W_{0}, W_{1}\right\}, t_{1} \vDash P_{\text {idle }} \wedge P_{\text {idle }}$ but $\left\{W_{0}, W_{1}\right\}, t_{1} \not \models P_{\text {idle }} * P_{\text {idle }}$
- $\left\{W_{0}, W_{1}\right\}, t_{0} \vDash P_{\text {idle }} * P_{\text {idle }}$
- $\left\{W_{0}, W_{1}\right\}, t_{0} \vDash\left(P_{\text {idle }} * P_{\text {idle }}\right) \wedge \diamond\left(P_{\text {idle }} * P_{\text {running }}\right)$

■ Remark: resource transformation cannot be express in DBI (it is not possible to model the messages that are produced / exchanged by the webservices)

## Introduction - results

## Some results

- DMBI logic
- captures resource transformation ( $\approx \mathbf{M B I}$ )
- includes modalities $\diamond$ and $\square(\approx \mathrm{DBI})$
- restriction to only one process ( $\not \approx \mathbf{M B I}$ )

■ Semantics: $\mu$-dynamic resource monoids

■ Expressiveness: DMBI models can capture $n$ concurrent processes that manipulate resources (but no production of processes $\not \approx \mathrm{MBI}$ )

- Proof theory: a tableaux method that is sound and complete

■ Counter-model extraction

## Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

## Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

## DMBI Logic - Language

## Language

$■ \mathbf{D M B I}=\mathbf{B B I}+\langle a\rangle[a] \diamond \square:$

$$
\phi::=p|\perp| \mathrm{I}|\phi \rightarrow \phi| \phi * \phi|\phi \rightarrow \phi|\langle a\rangle \phi|[a] \phi| \diamond \phi \mid \square \phi
$$

- Syntactic sugar:

$$
\begin{array}{crl}
\neg \phi & \equiv \phi \rightarrow \perp & \top \\
\phi \vee \neg \perp \\
\phi \vee \equiv \neg \phi \rightarrow \psi & \phi \wedge \psi \equiv \neg(\phi \rightarrow \neg \psi) \\
{[\mathrm{a}] \phi} & \equiv \neg\langle a\rangle \neg \phi & \square \phi \equiv \neg \diamond \neg \phi
\end{array}
$$

## DMBI Logic - Semantics

## Semantics

- Resource monoid: $\mathcal{R}=(R, \bullet, e)$
- $R$ is a set of resources
- $e \in R$ is the unit resource
- $\bullet R \times R \rightarrow R$ such that, for any $r_{1}, r_{2}, r_{3} \in R$ :
- Neutral element: $r_{1} \bullet e=e \bullet r_{1}=r_{1}$
- Commutativity: $r_{1} \bullet r_{2}=r_{2} \bullet r_{1}$
- Associativity: $r_{1} \bullet\left(r_{2} \bullet r_{3}\right)=\left(r_{1} \bullet r_{2}\right) \bullet r_{3}$

Remark: • is total because a resource is viewed as a multiset of atomic resources

## DMBI Logic－Semantics

## Semantics

－Action monoid（non commutative）： $\mathcal{A}=(A c t, \odot, 1)$
－Act is a set of actions
－ $1 \in$ Act is the unit action
－$\odot:$ Act $\times$ Act $\rightarrow$ Act such that，for any $a_{1}, a_{2}, a_{3} \in$ Act：
－Neutral element：$a_{1} \odot 1=1 \odot a_{1}=a_{1}$
－Associativity：$a_{1} \odot\left(a_{2} \odot a_{3}\right)=\left(a_{1} \odot a_{2}\right) \odot a_{3}$
Remark：actions are viewed as lists of atomic actions

## DMBI Logic - Semantics

## Semantics

■ A $\mu$-dynamic resource monoid: $\mathcal{M}=(\mathcal{R}, \mathcal{A}, S, \| \cdot\rangle, \mu)$

- $S$ is a set of states
$-\| \cdot\rangle \subseteq S \times A c t \times S$, such that:
- \|• $\rangle$-unit: $\left.s_{1} \| 1\right\rangle s_{1}$
- \|• $\rangle$-composition: if $\left.s_{1} \| a_{1}\right\rangle s_{2}$ and $\left.s_{2} \| a_{2}\right\rangle s_{3}$ then $\left.s_{1} \| a_{1} \odot a_{2}\right\rangle s_{3}$
- $\mu: A c t \times R \rightharpoonup R$, such that:
- $\mu$-unit: $\mu(1, r) \downarrow$ and $\mu(1, r)=r$
- $\mu$-composition: if $\mu\left(a_{1}, r\right) \downarrow$ and $\mu\left(a_{2}, \mu\left(a_{1}, r\right)\right) \downarrow$ then $\mu\left(a_{1} \odot a_{2}, r\right) \downarrow$ and $\mu\left(a_{1} \odot a_{2}, r\right)=\mu\left(a_{2}, \mu\left(a_{1}, r\right)\right)$
- Denotations:
- $r, s \xrightarrow{a} r^{\prime}, s^{\prime}$ iff $\mu(a, r) \downarrow, \mu(a, r)=r^{\prime}$ and $\left.s \| a\right\rangle s^{\prime}$
$-r, s \rightsquigarrow r^{\prime}, s^{\prime}$ iff $r, s \xrightarrow{a_{0}} r_{1}, s_{1} \xrightarrow{a_{1}} \ldots \xrightarrow{a_{n-1}} r_{n}, s_{n} \xrightarrow{a_{n}} r^{\prime}, s^{\prime}$

DMBI Logic - Semantics
Semantics
$\mu$-Model: $\mathcal{K}=\left(\mathcal{M}, \llbracket \cdot \rrbracket,|\cdot|, \vDash_{\mathcal{K}}\right)$
$-r, s \vDash_{\mathcal{K}} p$ iff $(r, s) \in \llbracket p \rrbracket$

- $r, s \vDash_{\mathcal{K}} \perp$ never
$-r, s \vDash_{\mathcal{K}} \mathrm{I}$ iff $r=e$
- $r, s \vDash_{\mathcal{K}} \phi \rightarrow \psi$ iff $r, s \vDash_{\mathcal{K}} \phi \Rightarrow r, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}} \phi * \psi$ iff $\exists r_{1}, r_{2} \in R \cdot r=r_{1} \bullet r_{2}$ and $r_{1}, s \vDash_{\mathcal{K}} \phi$ and $r_{2}, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}} \phi \rightarrow \psi$ iff $\forall r^{\prime} \in R \cdot r^{\prime}, s \vDash_{\mathcal{K}} \phi \Rightarrow r \bullet r^{\prime}, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}}\langle a\rangle \phi$ iff $\exists r^{\prime} \in R \cdot \exists s^{\prime} \in S \cdot r, s \xrightarrow{|a|} r^{\prime}, s^{\prime}$ and $r^{\prime}, s^{\prime} \vDash_{\mathcal{K}} \phi$
- $r, s \vDash_{\mathcal{K}} \diamond \phi$ iff $\exists r^{\prime} \in R \cdot \exists s^{\prime} \in S \cdot r, s \rightsquigarrow r^{\prime}, s^{\prime}$ and $r^{\prime}, s^{\prime} \vDash_{\mathcal{K}} \phi$

Validity: $\phi$ is valid iff $r, s \vDash_{\mathcal{K}} \phi$ for any $\mathcal{K}, r$ and $s$

## Plan

## 1 Language and semantics

2 Expressiveness

## 3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

## DMBI Logic - Expressiveness

## Concurrent processes modelling

- A user gives a description $\mathcal{D}$ of $n$ concurrent processes ( $P_{1}, \ldots, P_{n}$ ), where $n \geqslant 1$ :
$\mathcal{D}=\left(R_{\text {atom }}, A c t_{\text {atom }}, \mu_{\text {pre }}, \mu_{\text {post }},\left\{P_{1}, \ldots, P_{n}\right\}\right)$, such that:
- $R_{\text {atom }}$ is a set of atomic resources
- Act atom is a set of atomic actions
- $\mu_{\text {pre }}:$ Act $_{\text {atom }} \rightarrow \mathfrak{M}\left(R_{\text {atom }}\right)$
$\Rightarrow \mu_{\text {pre }}(a)$ is the multiset of resources consumed when a process performs the action a
- $\mu_{\text {post }}: \operatorname{Act}_{\text {atom }} \rightarrow \mathfrak{M}\left(R_{\text {atom }}\right)$
$\Rightarrow \mu_{\text {post }}(a)$ is the multiset of resources produced when a process performs the action a
- $P_{i}=\left(S_{i}, \rightarrow P_{i}\right)$ are processes: $S_{i}$ is the set of states of $P_{i}$ and $\rightarrow P_{i} \subseteq S_{i} \times A^{\text {ctatom }} \times S_{i}$ is the transition relation of $P_{i}$
- We aim to construct a $\mu$-model that models $\mathcal{D}$


## DMBI Logic - Expressiveness

## Concurrent processes modelling - Resources

- Denotations for resources:
- $\mathfrak{M}\left(R_{\text {atom }}\right)$ is the set of all multisets over $R_{\text {atom }}$ (functions $R_{\text {atom }} \rightarrow \mathbb{N}$ )
- $e$ is the empty multisets $\left(\forall r \in R_{\text {atom }} \cdot e(r)=0\right)$
- $R_{1} \leq R_{2}$ iff $R_{1}(r) \leqslant R_{2}(r)$ for all $r \in R_{\text {atom }}$
- $R_{1}+R_{2}=R_{3}$ such that $R_{3}(r)=R_{1}(r)+R_{2}(r)$ for all $r \in R_{\text {atom }}$
- $R_{1}-R_{2}=R_{3}$ such that $R_{3}(r)=R_{1}(r)-R_{2}(r)$ for all $r \in R_{\text {atom }}$ Remark: $R_{1}-R_{2}$ is defined iff $R_{2} \leq R_{1}$.


## DMBI Logic - Expressiveness

## Concurrent processes modelling - System transitions

- Two denotations for behaviour of the system:

$$
\begin{aligned}
& -R\left\{\begin{array}{ccc}
s_{1} & \xrightarrow{a_{1}} P_{1} & s_{1}^{\prime} \\
\vdots & & \vdots \\
s_{n} & \xrightarrow{a_{n}} & s_{n}^{\prime}
\end{array}\right\} R^{\prime} \quad \text { iff } \\
& \mu_{\text {pre }}\left(a_{1}\right)+\ldots+\mu_{\text {pre }}\left(a_{n}\right) \leq R \text { and } \\
& R^{\prime}=R-\mu_{\text {pre }}\left(a_{1}\right)-\ldots-\mu_{\text {pre }}\left(a_{n}\right)+\mu_{\text {post }}\left(a_{1}\right)+\ldots+\mu_{\text {post }}\left(a_{n}\right) \\
& \text { and } s_{i} \xrightarrow{a_{i}} P_{i} s_{i}^{\prime} \text { for all } i \in\{1, \ldots, n\} .
\end{aligned}
$$

$$
-R\left\{\begin{array}{ccc}
s_{1} & -\rightarrow P_{1} & s_{1}^{\prime} \\
\vdots & & \vdots \\
s_{n} & --P_{n} & s_{n}^{\prime}
\end{array}\right\} R^{\prime} \quad \text { iff }
$$

$$
R\left\{\begin{array}{clc}
s_{1} & \stackrel{a_{1}^{1}}{\rightarrow} P_{1} & s_{1}^{1} \\
\vdots & & \vdots \\
s_{n} & \xrightarrow{a_{n}^{1}} P_{n} & s_{n}^{1}
\end{array}\right\} R_{1} \ldots . \quad R_{k-1}\left\{\begin{array}{ccc}
s_{1}^{k-1} & \xrightarrow{a_{1}^{k}} P_{1} & s_{1}^{\prime} \\
\vdots & & \vdots \\
s_{n}^{k-1} & \underset{\rightarrow}{a_{n}^{k}} P_{n} & s_{n}^{\prime}
\end{array}\right\} R^{\prime}
$$

## DMBI Logic - Expressiveness

Concurrent processes modelling - Synchronous/Asynchronous

- Synchronous VS asynchronous processes:
- At each transition all processes perform an action:
$\Rightarrow$ synchronous processes
- How to model asynchronous processes?
- By considering an atomic action skip
- $\mu_{\text {pre }}($ skip $)=\mu_{\text {post }}(s k i p)=e$
- $s_{i} \xrightarrow{\text { skip }} P_{i} s_{i}$ for all processes $P_{i}$ and all states $s_{i} \in S_{i}$
- Example: $R\left\{\begin{array}{lll}s_{1} & \xrightarrow{a_{1}} P_{1} & s_{1}^{\prime} \\ s_{2} & \xrightarrow[s k i p]{\rightarrow} P_{2} & s_{2} \\ s_{3} & \xrightarrow{a_{3}} P_{2} & s_{3}^{\prime}\end{array}\right\} R^{\prime}$
$\Rightarrow$ only $P_{1}$ and $P_{3}$ perform an action in this step


## DMBI Logic - Expressiveness

## Concurrent processes modelling - Actions

- Denotations for actions:
- We define Actatom $_{\#}^{\#}=\left\{a_{1} \# \ldots \# a_{n} \mid a_{1}, \ldots, a_{n} \in A c t_{\text {atom }}\right\}$
$\Rightarrow a_{1} \# a_{2}$ is a concurrent atomic action where $P_{1}$ performs $a_{1}$ and $P_{2}$ performs $a_{2}$.
- We define $\mathfrak{L}\left(\right.$ Actatom $\left._{\#}^{\#}\right)$ the set of all lists built on Actatom $_{\#}^{\#}$ : For example $\left[a_{1} \# a_{2} \# a_{3} ; a_{1}^{\prime} \# a_{2}^{\prime} \# a_{3}^{\prime}\right]$ is an action that consists to perform $a_{1} \# a_{2} \# a_{3}$ and then $a_{1}^{\prime} \# a_{2}^{\prime} \# a_{3}^{\prime}$
- [] is the empty list
- $\oplus$ is the concatenation of lists

Propositions
$\| \mathcal{R}=\left(\mathfrak{M}\left(R_{\text {atom }}\right),+, e\right)$ is a resource monoid.
2 $\mathcal{A}=\left(\mathfrak{L}\left(\right.\right.$ Act $\left.\left.{ }_{\text {atom }}^{\#}\right), \oplus,[]\right)$ is an action monoid

## DMBI Logic - Expressiveness

Concurrent processes modelling - States and the $\mu$ function

- Denotations for states:
- $S^{\#}=\left\{s_{1} \# \ldots \# s_{n} \mid s_{i} \in S_{i}\right.$ for any $\left.1 \leqslant i \leqslant n\right\}$
$\Rightarrow s_{1} \# s_{2}$ is the state such that $P_{1}$ is in state $s_{1}$ and $P_{2}$ is in state $s_{2}$.
- Denotations for the $\mu$ function:

$$
\begin{aligned}
& -\mu^{\#}: \operatorname{Act} t_{\text {atom }}^{\#} \times \mathfrak{M}\left(R_{\text {atom }}\right) \rightharpoonup \mathfrak{M}\left(R_{\text {atom }}\right) \\
& \quad \mu^{\#}\left(a_{1} \# \ldots \# a_{n}, R\right)=\left\{\begin{array}{r}
\uparrow \quad \text { if } \mu_{\text {pre }}\left(a_{1}\right)+\ldots+\mu_{\text {pre }}\left(a_{n}\right) \nsubseteq R \\
R-\mu_{\text {pre }}\left(a_{1}\right)-\ldots-\mu_{\text {pre }}\left(a_{n}\right) \\
+\mu_{\text {post }}\left(a_{1}\right)+\ldots+\mu_{\text {post }}\left(a_{n}\right) \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
-\mu_{\text {list }}: \mathfrak{L}(\text { Act atom }) \times \mathfrak{M}\left(R_{\text {atom }}\right) \rightharpoonup \mathfrak{M}\left(R_{\text {atom }}\right)
$$

$$
\mu_{\text {list }}(L, R)= \begin{cases}R & \text { if } L=[] \\ \uparrow & \text { if } L=\left[A_{1} ; \ldots ; A_{k}\right] \text { and } \mu^{\#}\left(A_{1}, R\right) \uparrow \\ \mu_{\text {list }}\left(\left[A_{2} ; \ldots ; A_{k}\right], \mu^{\#}\left(A_{1}, R\right)\right) \quad \text { where } L=\left[A_{1} ; \ldots ; A_{k}\right]\end{cases}
$$

## DMBI Logic - Expressiveness

## Concurrent processes modelling - State/resource relation

- Denotations for the relation on states and resources:

$$
\begin{aligned}
& -|\cdot\rangle^{\#}: S^{\#} \times A c t_{\text {atom }}^{\#} \times S^{\#} \\
& \quad s_{1} \# \ldots \# s_{n}\left|a_{1} \# \ldots \# a_{n}\right\rangle^{\#} s_{1}^{\prime} \# \ldots \# s_{n}^{\prime} \text { iff } s_{i} \xrightarrow[\rightarrow P_{i}]{a_{i}} s_{i}^{\prime} \text { for all } 1 \leqslant i \leqslant n \\
& -|\cdot\rangle_{\text {list }}: S^{\#} \times \mathfrak{L}\left(A c t_{\text {atom }}^{\#}\right) \times S^{\#} \\
& \quad S\left|\left[A_{1} ; \ldots ; A_{k}\right]\right\rangle l_{\text {list }} S^{\prime} \text { iff } S\left|A_{1}\right\rangle^{\#} S_{1}\left|A_{2}\right\rangle^{\#} \ldots\left|A_{k-1}\right\rangle^{\#} S_{k-1}\left|A_{k}\right\rangle^{\#} S^{\prime}
\end{aligned}
$$

## Lemma

Let $\mathcal{D}=\left(R_{\text {atom }}, A c t_{\text {atom }}, \mu_{\text {pre }}, \mu_{\text {post }},\left\{P_{1}, \ldots, P_{n}\right\}\right)$, where $P_{i}=\left(S_{i} \rightarrow P_{i}\right)$.
$\mathcal{M}=\left(\mathcal{R}, \mathcal{A}, S^{\#},|\cdot\rangle_{\text {list }}, \mu_{\text {list }}\right)$, where $\mathcal{R}=\left(\mathfrak{M}\left(R_{\text {atom }}\right),+, e\right)$ and where $\mathcal{A}=(\mathfrak{L}($ Act atom $), \oplus,[])$ is a $\mu$-DRM.

## DMBI Logic－Expressiveness

Concurrent processes modelling－Reachability／Satisfiability
■ Denotations：

$$
\begin{aligned}
& -\llbracket \cdot \rrbracket: \operatorname{Prop} \rightarrow \mathbb{P}\left(\mathfrak{M}\left(R_{\text {atom }}\right) \times S^{\#}\right) \\
& \llbracket r_{i} \rrbracket=\left\{\left(\left\{r_{i}\right\}, s\right) \mid s \in S^{\#}\right\} \\
& -|\cdot|: S_{\text {Act }} \rightarrow \mathfrak{L}(\text { Actatom }) \\
& \qquad\left|a_{1} \# \ldots \# a_{n}\right|=\left[a_{1} \# \ldots \# a_{n}\right] \\
& -\widehat{:}: \mathfrak{M}\left(R_{\text {atom }}\right) \rightarrow \mathcal{L}: \\
& \qquad \widehat{R}=\left\{\begin{array}{cl}
\text { I } & \text { if } R=e \\
r_{1} * \ldots * r_{k} & \text { if } R=\left\{r_{1}, \ldots, r_{k}\right\}
\end{array}\right.
\end{aligned}
$$

## DMBI Logic－Expressiveness

Concurrent processes modelling－Reachability／Satisfiability

## Lemma

$$
R\left\{\begin{array}{ccc}
s_{1} & \xrightarrow{a_{1}} P_{1} & s_{1}^{\prime} \\
\vdots & & \vdots \\
s_{n} & \xrightarrow{a_{n}} & P_{n}
\end{array} s_{n}^{\prime}\right\} R^{\prime} \text { iff } R, s_{1} \# \ldots \# s_{n} \xrightarrow{\left[a_{1} \# \ldots \# a_{n}\right]} R^{\prime}, s_{1}^{\prime} \# \ldots \# s_{n}^{\prime}
$$

## Lemma

$$
R\left\{\begin{array}{ccc}
s_{1} & \longrightarrow P_{1} & s_{1}^{\prime} \\
\vdots & & \vdots \\
s_{n} & --P_{n} & s_{n}^{\prime}
\end{array}\right\} R^{\prime} \text { iff } R, s_{1} \# \ldots \# s_{n} \rightsquigarrow R^{\prime}, s_{1}^{\prime} \# \ldots \# s_{n}^{\prime}
$$

## DMBI Logic - Expressiveness

Concurrent processes modelling - Reachability/Satisfiability

## Theorem

$$
R\left\{\begin{array}{ccc}
s_{1} & \xrightarrow{a_{1}} P_{1} & s_{1}^{\prime} \\
\vdots & & \vdots \\
s_{n} & \xrightarrow{a_{n}} P_{n} & s_{n}^{\prime}
\end{array}\right\} R^{\prime} \text { iff } R, s_{1} \# \ldots \# s_{n} \vDash_{\mathcal{K}}\left\langle a_{1} \# \ldots \# a_{n}\right\rangle \widehat{R^{\prime}}
$$

Theorem

$$
R\left\{\begin{array}{ccc}
s_{1} & -\rightarrow P_{1} & s_{1}^{\prime} \\
\vdots & & \vdots \\
s_{n} & -\rightarrow P_{n} & s_{n}^{\prime}
\end{array}\right\} R^{\prime} \quad \text { iff } \quad R, s_{1} \# \ldots \# s_{n} \vDash_{\mathcal{K}} \diamond \widehat{R^{\prime}}
$$

## DMBI Logic－Expressiveness

## Concurrent processes modelling－Mutual exclusion

－Mutual exclusion（revisited）：

$$
\begin{aligned}
\mathcal{D} & =\left(R_{\text {atom }}, A c t_{\text {atom }}, \mu_{\text {pre }}, \mu_{\text {post }},\left\{P_{1}, P_{2}\right\}\right), \text { where: } \\
& -R_{\text {atom }}=\{J\} \\
& -A_{\text {atom }}=\left\{a_{n c}, a_{c}, a_{p}, a_{v}\right\}
\end{aligned}
$$

－$\mu_{\text {pre }}$ is defined by：

$$
\begin{aligned}
& -\mu_{\text {pre }}\left(a_{n c}\right)=\mu_{\text {pre }}\left(a_{c}\right)=\mu_{\text {pre }}\left(a_{v}\right)=e \\
& -\mu_{\text {pre }}\left(a_{p}\right)=J
\end{aligned}
$$

－$\mu_{\text {post }}$ is defined by：
－$\mu_{\text {post }}\left(a_{n c}\right)=\mu_{\text {post }}\left(a_{c}\right)=\mu_{\text {post }}\left(a_{p}\right)=e$
－$\mu_{\text {post }}\left(a_{v}\right)=J$
－$P_{1}=\left(S_{1}, \rightarrow P_{1}\right)$ and $P_{2}=\left(S_{2}, \rightarrow P_{2}\right)$ such that：
－$S_{1}=S_{2}=\left\{s_{n c}, s_{c}\right\}$
－For any $i \in\{1,2\}$ ，we have：

$$
s_{n c} \xrightarrow{a_{n c}} P_{i} s_{n c} \quad s_{n c} \xrightarrow{a_{p}} P_{i} s_{c} \quad s_{c} \xrightarrow{a_{c}} P_{i} s_{c} \quad s_{c} \xrightarrow{a_{v}} P_{i} s_{n c}
$$

## DMBI Logic - Expressiveness

## Concurrent processes modelling - Mutual exclusion

- Mutual exclusion (revisited):
- We construct $\mathcal{M}=\left(\mathcal{R}, \mathcal{A}, S^{\#},|\cdot\rangle_{\text {list }}, \mu_{\text {list }}\right)$, where $\mathcal{R}=\left(\mathfrak{M}\left(R_{\text {atom }}\right),+, e\right)$ and where $\mathcal{A}=\left(\mathfrak{L}\left(\right.\right.$ Act $\left.\left._{\text {atom }}^{\#}\right), \oplus,[]\right)$
- "After performing any succession of actions, the processes can not perform together a critical action":

$$
\{J\}, s_{n c} \# s_{n c} \vDash_{\mathcal{K}} \square\left[a_{c} \# a_{c}\right] \perp
$$

- "It is impossible to reach a state such that more than one token is available":

$$
\{J\}, s_{n c} \# s_{n c} \vDash_{\mathcal{K}} \neg \diamond(J * J * \top)
$$

- We observe that DMBI:
- captures resource transformation $(\not \approx \mathrm{DBI})(\approx \mathrm{MBI})$
- expresses properties on any reachable states $(\approx \mathrm{DBI})(\not \approx \mathrm{MBI})$
- does not model capture process production $(\not \approx \mathbf{~ M B I})$


## Plan

## 1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

## DMBI Proof theory - Tableaux method

An extension of $\mathbf{B I}$ calculus (Galmiche-Méry-Pym 2005) based on constrained set of statements (CSS in Larchey 2012)

■ Resource labels (R), action labels (Act) and state labels (S)
■ Resource constraints $(=), \mu$-constraints $(\mu)$ and transition constraints (\|. $\rangle$ )

■ Signed formulae: $\mathbb{S} \phi:(x, u)$
■ Branches are denoted $\langle\mathcal{F}, \mathcal{C}\rangle$ where $\mathcal{C}$ is a set of resource, transition and $\mu$ constraints

- Assertions/requirements


## DMBI Proof theory - Tableaux method

## Labels

- Resource labels $\left(L_{r}\right)$ :

$$
X::=1_{r}\left|c_{i}\right| X \circ X
$$

where $c_{i} \in \gamma_{r}=\left\{c_{1}, c_{2}, \ldots\right\}$ and $\circ$ is a function on $L_{r}$ that is associative, commutative and $1_{r}$ is its unit. $x \circ y$ is denoted $x y$.

- Action labels $\left(L_{a}\right)$ :

$$
X::=1_{a}\left|a_{i}\right| d_{i} \mid X, X
$$

where $a_{i} \in S_{A c t}, d_{i} \in \gamma_{a}=\left\{d_{1}, d_{2}, \ldots\right\}, S_{A c t} \cap \gamma_{a}=\emptyset$ and . is a function on $L_{a}$ that is associative (not commutative) and $1_{a}$ is its unit. $f . g$ is denoted $f g$.

■ State labels $\left(L_{s}\right): L_{s}=\left\{I_{1}, I_{2}, \ldots\right\}$.

## DMBI Proof theory－Tableaux method

## Constraints

－Resource constraints：
－encode equality on resources．
－$x \sim y$ where $x$ and $y$ are resource labels．

■ $\mu$－constraints：
－encode the function $\mu$ ．
－$x \xrightarrow{f} y$ where $x$ and $y$ are resource labels and $f$ is an action label．
－Transition constraints：
－Encode the function $\| \cdot\rangle$ ．
－$u \stackrel{f}{\mapsto} v$ where $u$ and $v$ are state labels and $f$ is an action label．

## DMBI Proof theory－Tableaux method

Constraint closure
－Rules that product resource constraints：

$$
\left.\left.\begin{array}{lcc}
\hline 1_{r} \sim 1_{r}
\end{array} 1_{r}\right\rangle \quad \frac{x \sim y}{y \sim x}\left\langle s_{r}\right\rangle, \frac{x y \sim x y}{x \sim x}\left\langle d_{r}\right\rangle\right)
$$

## DMBI Proof theory - Tableaux method

Constraint closure
■ Rules that product $\mu$-constraints:

$$
\left.\begin{array}{cc}
\frac{x \sim x}{x \xrightarrow{1_{a}} x}\left\langle 1_{\mu}\right\rangle \\
x \xrightarrow{f} y \quad x \sim x^{\prime} \\
x^{\prime} \xrightarrow{f} y
\end{array} k_{\left.\mu_{1}\right\rangle}\right\rangle \stackrel{f \stackrel{f}{\rightarrow} y \quad y \xrightarrow{f g} z}{ }\left\langle t_{\mu}\right\rangle
$$

- Rules that product transition constraints:

$$
\frac{u \stackrel{f}{\mapsto} v}{u \stackrel{1_{a}}{\mapsto} u}\left\langle 1_{t_{1}}\right\rangle \quad \frac{u \stackrel{f}{\mapsto} v}{v \stackrel{1_{a}}{\longmapsto} v}\left\langle 1_{t_{2}}\right\rangle \quad \frac{u \stackrel{f}{\mapsto} v}{u \stackrel{f g}{\stackrel{g}{\mapsto} w} w}\left\langle t_{t}\right\rangle
$$

## DMBI Tableaux method

## Modal rules

- Assertion rules:

Introduction of new labels and assertions (or constraints)

$$
\begin{gathered}
\frac{\mathbb{T}\langle f\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, l_{i}\right)\right\},\left\{x \stackrel{f}{\rightarrow} c_{i}, u \stackrel{f}{\mapsto} I_{i}\right\}\right\rangle}\langle\mathbb{T}\langle-\rangle\rangle \\
\left.\frac{\mathbb{T}\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, l_{i}\right)\right\},\left\{x \stackrel{d_{i}}{\rightarrow} c_{i}, u \stackrel{d_{i}}{\rightleftharpoons} l_{i}\right\}\right\rangle}\langle\mathbb{T}\rangle\right\rangle
\end{gathered}
$$

- Requirement rules:

Conditions that must be verified in the closure of constraints

$$
\begin{aligned}
& \frac{\mathbb{F}\langle f\rangle \phi:(x, u) \in \mathcal{F} \text { and } x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}}}{\langle\mathbb{F} \phi:(y, v), \emptyset\rangle}\langle\mathbb{F}\langle-\rangle\rangle \\
& \left.\frac{\mathbb{F} \diamond \phi:(x, u) \in \mathcal{F} \text { and } x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}}}{\langle\{\mathbb{F} \phi:(y, v)\}, \emptyset\rangle}\langle\mathbb{F}\rangle\right\rangle
\end{aligned}
$$

## DMBI Tableaux method

## Definition: closed branch

A CSS (branch) $\langle\mathcal{F}, \mathcal{C}\rangle$ is closed iff one of these conditions holds:

- $\mathbb{T} \phi:(x, u) \in \mathcal{F}, \mathbb{F} \phi:(y, u) \in \mathcal{F}$ and $x \sim y \in \overline{\mathcal{C}}$
- $\mathbb{F I}:(x, u) \in \mathcal{F}$ and $1_{r} \sim x \in \overline{\mathcal{C}}$
- $\mathbb{T} \perp:(x, u) \in \mathcal{F}$


## Definition: $\mu$-proof

A $\mu$-proof for a formula $\phi$ is a $\mu$-tableau for $\phi$ which is closed.

## Theorem: soundness

If there exists a $\mu$-proof for a formula $\phi$ then $\phi$ is valid.

## Theorem: completeness

If a formula $\phi$ is valid then there is a $\mu$-proof for $\phi$.

## DMBI Tableaux method - an example

- How to prove $\phi \equiv(\mathrm{I} \rightarrow\langle a\rangle\langle b\rangle P) \rightarrow \diamond P$ ?

Step 1: Initialization

$$
\begin{array}{cc}
{[\mathcal{F}]} & {[\mathcal{C}]} \\
\mathbb{F}(\mathrm{I}-*\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) & c_{1} \sim c_{1} \quad I_{1} \stackrel{1_{a}}{\longrightarrow} I_{1}
\end{array}
$$

## DMBI Tableaux method - an example

$$
\begin{array}{cc}
{[\mathcal{F}]} & {[\mathcal{C}]} \\
\mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) & c_{1} \sim c_{1} \quad l_{1} \stackrel{1_{a}}{\mapsto} l_{1}
\end{array}
$$

## DMBI Tableaux method - an example

$$
\begin{array}{cc}
{[\mathcal{F}]} & c_{1} \sim c_{1} \\
\sqrt{\sqrt{l}]} \mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) \\
\mid \\
\mathbb{T I - \langle a \rangle \langle b \rangle P : ( c _ { 1 } , l _ { 1 } )} \\
\mathbb{F} \diamond P:\left(c_{1}, l_{1}\right) \\
\frac{\mathbb{F} \phi \rightarrow \psi:(x, u) \in \mathcal{F}}{\langle\{\mathbb{T} \phi:(x, u), \mathbb{F} \psi:(x, u)\}, \emptyset\rangle}\langle\mathbb{F} \rightarrow\rangle
\end{array}
$$

## DMBI Tableaux method - an example

## [F]

$\sqrt{1} \mathbb{F}\left(\mathrm{I} \rightarrow\left\langle\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, h_{1}\right)\right.\right.$

$$
V_{2} \mathbb{T I} *\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)
$$

$$
\mathbb{F} \diamond P:\left(c_{1}, l_{1}\right)
$$

$\mathbb{F I}:\left(1_{r}, l_{1}\right)$

$$
\frac{\mathbb{T} \phi * \psi:(x, u) \in \mathcal{F} \text { and } x y \sim x y \in \overline{\mathcal{C}}}{\langle\{\mathbb{F} \phi:(y, u)\}, \emptyset\rangle \mid\langle\{\mathbb{T} \psi:(x y, u)\}, \emptyset\rangle}\langle\mathbb{T}-*\rangle
$$

Remark: $c_{1} \circ 1_{r}=c_{1}$

## DMBI Tableaux method - an example

$$
\begin{aligned}
& \text { [F] } \\
& \sqrt{ } \mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) \\
& \mathbb{F I : ( 1 _ { r } , l _ { 1 } )} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{F I : ( 1 _ { r } , l _ { 1 } )} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{F I : ( 1 _ { r } , l _ { 1 } )} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{F I : ( 1 _ { r } , l _ { 1 } )} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{T}\langle b\rangle P:\left(c_{2}, l_{2}\right) \\
& \text { [C] } \\
& c_{1} \sim c_{1} \quad I_{1} \stackrel{1_{a}}{\longrightarrow} I_{1} \\
& c_{1} \xrightarrow{a} c_{2} \quad I_{1} \stackrel{a}{\mapsto} I_{2} \\
& \frac{\mathbb{T}\langle f\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, I_{i}\right)\right\},\left\{x \stackrel{f}{\rightarrow} c_{i}, u \stackrel{f}{\rightharpoonup} I_{i}\right\}\right\rangle}\langle\mathbb{T}\langle-\rangle\rangle
\end{aligned}
$$

## DMBI Tableaux method - an example

[F]

$$
\frac{\mathbb{T}\langle f\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, l_{i}\right)\right\},\left\{x \stackrel{f}{\rightarrow} c_{i}, u \stackrel{f}{\mapsto} l_{i}\right\}\right\rangle}\langle\mathbb{T}\langle-\rangle\rangle
$$

$$
\begin{aligned}
& \sqrt{1} \mathbb{F}(\mathrm{I} \rightarrow\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) \\
& \sqrt{ } 2 \mathbb{T I} \rightarrow\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right) \\
& \mathbb{F} \diamond P:\left(c_{1}, l_{1}\right) \\
& \mathbb{F I}:\left(1_{r}, l_{1}\right) \\
& \sqrt{ }{ }_{3} \mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right) \\
& \begin{array}{c}
\sqrt{ } \mathbb{T}\langle b\rangle P:\left(c_{2}, l_{2}\right) \\
1 \\
\mathbb{T} P:\left(c_{3}, l_{3}\right)
\end{array}
\end{aligned}
$$

## DMBI Tableaux method - an example

[F]
$\sqrt{ } \mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right)$

$$
\sqrt{ } \mathbb{T I} *\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)
$$

$$
\sqrt{5} \mathbb{F} \diamond P:\left(c_{1}, l_{1}\right)
$$

$\mathbb{F I}:\left(1_{r}, h_{1}\right)$

$$
\begin{gathered}
\sqrt{ } \mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right) \\
1 \\
\sqrt{ }{ }_{4} \mathbb{T}\langle b\rangle P:\left(c_{2}, l_{2}\right) \\
1 \\
\mathbb{T} P:\left(c_{3}, l_{3}\right) \\
1 \\
\mathbb{F} P:\left(c_{3}, l_{3}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\mathbb{F} \diamond \phi:(x, u) \in \mathcal{F} \text { and } x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}}}{\langle\{\mathbb{F} \phi:(y, v)\}, \emptyset\rangle}\langle\mathbb{F} \diamond\rangle \\
\frac{c_{1} \xrightarrow{a} c_{2} \quad c_{2} \xrightarrow{b} c_{3}}{c_{3}}\left\langle t_{\mu}\right\rangle \quad \frac{I_{1} \stackrel{a}{\mapsto} I_{2} \quad I_{2} \stackrel{b}{\mapsto} I_{3}}{I_{1} \xrightarrow{a b} I_{3}}\left\langle t_{t}\right\rangle
\end{gathered}
$$

## [c]



$$
\begin{array}{ll}
c_{1} \stackrel{a}{\rightarrow} c_{2} \\
c_{2} \xrightarrow{b} c_{3} & I_{1} \stackrel{a}{\mapsto} I_{2} \\
& \stackrel{b}{\mapsto} I_{3}
\end{array}
$$

## DMBI Tableaux method - an example

## Step 2: Application of rules



The formula $(\mathrm{I}-*\langle a\rangle\langle b\rangle P) \rightarrow \diamond P$ is valid

## Plan

## 1 Language and semantics

2 Expressiveness

## 3 Tableaux method

4 Counter-model extraction

## 5 Conclusions - Perspectives

## DMBI Counter-model extraction

## Counter-model extraction

## Definition: Hintikka CSS

A Hintikka $\operatorname{CSS}\langle\mathcal{F}, \mathcal{C}\rangle$ is a unclosed branch such that "all information has been extracted":
$1 \mathbb{T} \phi:(x, u) \notin \mathcal{F}$ or $\mathbb{F} \phi:(y, u) \notin \mathcal{F}$ or $x \sim y \notin \overline{\mathcal{C}}$
2-12 ...

$$
\begin{aligned}
& 13 \text { If } \mathbb{T} \diamond \phi:(x, u) \in \mathcal{F} \text { then } \exists y \in L_{r}, \exists f \in L_{a}, \exists v \in L_{s}, x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } \\
& u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}} \text { and } \mathbb{T} \phi:(y, v) \in \mathcal{F}
\end{aligned}
$$

14 If $\mathbb{F} \diamond \phi:(x, u) \in \mathcal{F}$ then $\forall y \in L_{r}, \forall f \in L_{a}, \forall v \in L_{s},(x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}}$ and $u \stackrel{f}{\rightleftharpoons} v \in \overline{\mathcal{C}}) \Rightarrow \mathbb{F} \phi:(y, v) \in \mathcal{F}$

## Lemma: counter-model extraction

A counter-model can be extracted from a Hintikka branch.

## DMBI Counter-model extraction

## Counter-model extraction

## Function $\Omega$

Let $\langle\mathcal{F}, \mathcal{C}\rangle$ be a Hintikka CSS. $\Omega(\langle\mathcal{F}, \mathcal{C}\rangle)=\left(\mathcal{M}, \llbracket \cdot \rrbracket,|\cdot|, \vDash_{\mathcal{K}}\right)$, such that:

- $R=\mathcal{D}_{r}(\overline{\mathcal{C}}) / \sim \quad S=\mathcal{A}_{s}(\mathcal{C}) \quad$ Act $=\mathcal{D}_{a}(\overline{\mathcal{C}}) \cup\{\alpha\}\left(\right.$ where $\left.\alpha \notin \mathcal{D}_{a}(\overline{\mathcal{C}})\right)$
- $e=\left[1_{r}\right]$
- $1=1_{a}$
- $[x] \cdot[y]=[x \circ y]$
- $\mu(a,[x])= \begin{cases}\uparrow & \text { if }\{y \mid x \xrightarrow{a} y \in \overline{\mathcal{C}}\}=\emptyset \\ \{y \mid x \xrightarrow{a} y \in \overline{\mathcal{C}}\} & \text { otherwise }\end{cases}$
- $\left.s_{1} \| f\right\rangle s_{2}$ iff $s_{1} \stackrel{f}{\rightleftharpoons} s_{2} \in \overline{\mathcal{C}}$
- For all $a_{1}, a_{2} \in A c t, a_{1} \odot a_{2}= \begin{cases}a_{1} \cdot a_{2} & \text { if } a_{1} \cdot a_{2} \in \mathcal{D}_{a}(\overline{\mathcal{C}}) \\ \alpha & \text { otherwise }\end{cases}$
- For all $a \in S_{A c t,},|a|= \begin{cases}a & \text { if } a \in \mathcal{D}_{a}(\overline{\mathcal{C}}) \\ \alpha & \text { otherwise }\end{cases}$
- $([x], s) \in \llbracket P \rrbracket$ iff $\exists y \in L_{r}, x \in[y]$ and $\mathbb{T} P:(y, s) \in \mathcal{F}$


## Plan

## 1 Language and semantics

2 Expressiveness

## 3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

## Conclusions

## Conclusions

A modal extension of $\mathbf{B B I}$ for resource transformations
－That captures resource transformations $(\approx \mathbf{M B I})$
－That includes modalities $\diamond$ and $\square(\approx \mathbf{D B I})$
－That has a sound and complete calculus with a countermodel extraction method
－That can express properties resources produced by $n$ concurrent processes that manipulate these resources

## Future works

Future works
■ Study is DMBI can capture process production
－Study extension of DMBI with locations and provide a sound and complete calculus
－Study other extension to express properties on：
－Webservices
－Protocols

