Modelling of concurrent processes in DMBI logic

Modelling of concurrent processes in DMBI logic

J.R. Courtault - D. Galmiche

ANR DynRes Meeting - Nancy

May 2013

Introduction - resource logics

Resources

- Resource is a key notion in computer science:
 - Memory
 - Processes
 - Messages
- Different concerns about resources:
 - Location
 - Ownership
 - Access to
 - Consumption of
- ► Study of resources and related notions through logics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction - resource logics

Bunched Implications (BI) logic (O'Hearn and Pym 1999, Pym 2002)

$$\blacksquare BI = \begin{cases} \land, \lor, \rightarrow, \top, \bot \text{ (additives)} \\ *, -*, I \text{ (multiplicatives)} \end{cases}$$

BI (intuitionistic additives) , BBI (classical additives)

- Sequents with bunches (trees of formulae where internal nodes are "," or ";"): $\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \twoheadrightarrow \psi} = \frac{\Gamma; \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi}$
- Bunches can be viewed as areas of a model:

$$A, (B; C), A \rightsquigarrow A BCA$$

- Resources are areas and propositional symbols are properties of resources (areas)
- **BI** and **BBI** focus on separation (,) / sharing (;)

Separation logics

- BI and BBI logical kernels of separation logics
- Some separation logics:
 - PL: Pointer (Separation) Logic with (x → a, b) (O'Hearn et al. 2001)
 - BI-Loc: Separation Logic with locations (Biri-Galmiche 2007)
 - **MBI**: Separation Logic with modalities for processes $(R, E \xrightarrow{a} R', E')$ (Pym-Toft 2006)
 - **DBI**: Separation Logic with modalities for dynamic properties of resources (Courtault-Galmiche 2013)
- ► Study of dynamics in resource/separation logics

Dynamics in resource logics

- What are systems with dynamic resources?
 - Systems that transform resources (producers / consumers)
 - Systems that modify resource properties (value of cells of a cellular automata): no resource production/consumption
- Resource logics and dynamics
 - **BI**: Properties on resources = no dynamics
 - **MBI** $(R, E \xrightarrow{a} R', E')$: Dynamics is resource transformation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- **DBI** (**BI** + \Diamond , \Box): Dynamic properties of resources

Introduction - MBI logic

MBI and SCRP (Pym-Tofte 2006)

SCRP: Synchronous Calculus of Resources and Processes

- Processes: $E ::= 0 \mid X \mid a : E \mid E + E \mid E \times E \mid \nu R.E \mid fix_i X.E$
- SCRP transitions (some rules):

 $\frac{R, E \xrightarrow{a} R', E' \qquad S, F \xrightarrow{b} S', F'}{R \circ S, E \times F \xrightarrow{a\#b} R' \circ S', E' \times F'} (R \circ S \downarrow)$

• MBI: BI/BBI + modalities ($\langle a \rangle$, [a], $\langle a \rangle_{\nu}$, [a]_{ν})

Forcing relation:

- $R, E \vDash \phi * \psi$ iff $\exists R_1, R_2, E_1, E_2 \cdot R = R_1 \circ R_2$ and $E \sim E_1 \times E_2$ and $R_1, E_1 \vDash \phi$ and $R_2, E_2 \vDash \psi$
- $R, E \vDash \langle a \rangle \phi$ iff $\exists R', E' \cdot R, E \xrightarrow{a} R', E'$ and $R', E' \vDash \phi$
- $R, E \vDash \langle a \rangle_{\nu} \phi$ iff $\exists T, R', E' \cdot R \circ T, E \xrightarrow{a} R', E'$ and $R', E' \vDash \phi$

Introduction - MBI logic

An example: mutual exclusion

Processes:

$$E \stackrel{def}{=} nc : E + critical : E_{critical}$$

 $E_{critical} \stackrel{def}{=} critical : E_{critical} + critical : E$

- Minimum resources required for the action: $\rho(nc) = \{e\}$ and $\rho(critical) = \{R\}$
- The μ function: $\mu(a, R) = R$ for any a action
- The action *critical*#*critical* is never performed: *R*, *E* × *E* ⊨ [*critical*#*critical*] ⊥
- Remarks:
 - Only a calculus with bunches and without completeness
 - R, E × E ⊨ [critical#critical] ⊥ does not mean that in any reachable state, couple (resource, process), it is impossible to execute two concurrent critical actions (need of ◊ and □)

Introduction - DBI logic

DBI logic

- Dynamic modal **BI**
 - **BI** with modalities \Diamond and \Box
 - Dynamic resource properties
 - A calculus that is sound and complete
- DBI models:
 - a resource monoid: resources
 - a graph: states and a state preorder (reachability)
- Forcing relation:
 - $r, s \models \phi * \psi$ iff $\exists r_1, r_2 \cdot r_1 \bullet r_2 \sqsubseteq r$ and $r_1, s \models \phi$ and $r_2, s \models \psi$ (remark: * separates only the resource r)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $r, s \vDash \Diamond \phi$ iff $\exists s' \cdot s \preceq s'$ and $r, s' \vDash \phi$

Introduction - DBI logic

An example: properties on states of webservices

- A set of composed webservices $W = \{W_0, W_1, W_2, W_3, ...\}$
- A model:

An interpretation [.]:

- $\llbracket P_{idle} \rrbracket = \{(S, t_i) \mid \exists W_i \in S \cdot W_i \text{ is } idle \text{ at time } t_i\}$
- $\llbracket P_{running} \rrbracket = \{(S, t_i) \mid \exists W_i \in S \cdot W_i \text{ is } running \text{ at time } t_i\}$

where $S \subseteq W$ is a set of webservices.

For example: $S, t \models P_{idle}$ if there is at least a webservice in S that is idle at time t

Introduction - DBI logic

An example: properties on states of webservices

Properties that can be expressed:

- $\{W_0, W_1\}, t_1 \models P_{idle}$
- $\{W_0, W_1\}, t_1 \vDash P_{idle} \land P_{idle}$ but $\{W_0, W_1\}, t_1 \nvDash P_{idle} * P_{idle}$
- $\{W_0, W_1\}, t_0 \vDash P_{idle} * P_{idle}$
- $\{W_0, W_1\}, t_0 \vDash (P_{\textit{idle}} * P_{\textit{idle}}) \land \Diamond (P_{\textit{idle}} * P_{\textit{running}})$
- Remark: resource transformation cannot be express in DBI (it is not possible to model the messages that are produced / exchanged by the webservices)

Introduction - results

Some results

DMBI logic

- captures resource transformation (pprox MBI)
- includes modalities \Diamond and \Box (pprox DBI)
- restriction to only one process (\approx **MBI**)
- Semantics: μ -dynamic resource monoids
- Expressiveness: DMBI models can capture *n* concurrent processes that manipulate resources (but no production of processes ≈ MBI)
- Proof theory: a tableaux method that is sound and complete
- Counter-model extraction

1 Language and semantics

- 2 Expressiveness
- 3 Tableaux method
- 4 Counter-model extraction
- 5 Conclusions Perspectives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

◆□> ◆舂> ◆注> ◆注> 注目

Language

■ DMBI = BBI +
$$\langle a \rangle$$
 [a] \Diamond \Box :
 $\phi ::= p \mid \bot \mid I \mid \phi \rightarrow \phi \mid \phi * \phi \mid \phi \twoheadrightarrow \phi \mid \langle a \rangle \phi \mid [a] \phi \mid \Diamond \phi \mid \Box \phi$

Syntactic sugar:

$$\neg \phi \equiv \phi \rightarrow \bot \qquad \qquad \top \equiv \neg \bot$$
$$\phi \lor \psi \equiv \neg \phi \rightarrow \psi \qquad \phi \land \psi \equiv \neg (\phi \rightarrow \neg \psi)$$
$$[a]\phi \equiv \neg \langle a \rangle \neg \phi \qquad \qquad \Box \phi \equiv \neg \Diamond \neg \phi$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

DMBI Logic - Semantics

Semantics

- Resource monoid: $\mathcal{R} = (R, \bullet, e)$
 - R is a set of resources
 - $e \in R$ is the unit resource
 - •: $R \times R \rightarrow R$ such that, for any $r_1, r_2, r_3 \in R$:
 - Neutral element: $r_1 \bullet e = e \bullet r_1 = r_1$
 - Commutativity: $r_1 \bullet r_2 = r_2 \bullet r_1$
 - Associativity: $r_1 \bullet (r_2 \bullet r_3) = (r_1 \bullet r_2) \bullet r_3$

Remark: • is total because a resource is viewed as a multiset of atomic resources

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Semantics

- Action monoid (non commutative): $\mathcal{A} = (Act, \odot, 1)$
 - Act is a set of actions
 - $1 \in Act$ is the unit action
 - \odot : $Act \times Act \rightarrow Act$ such that, for any $a_1, a_2, a_3 \in Act$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Neutral element: $a_1 \odot 1 = 1 \odot a_1 = a_1$
- Associativity: $a_1 \odot (a_2 \odot a_3) = (a_1 \odot a_2) \odot a_3$

Remark: actions are viewed as lists of atomic actions

DMBI Logic - Semantics

Semantics

- A μ -dynamic resource monoid: $\mathcal{M} = (\mathcal{R}, \mathcal{A}, \mathcal{S}, \|\cdot\|, \mu)$
 - S is a set of states
 - $\|\cdot\rangle \subseteq S \times Act \times S$, such that:
 - $\|\cdot\rangle$ -unit: $s_1 \|1\rangle s_1$
 - $\|\cdot\rangle$ -composition: if $s_1 \|a_1\rangle s_2$ and $s_2 \|a_2\rangle s_3$ then $s_1 \|a_1 \odot a_2\rangle s_3$
 - $\mu : Act \times R
 ightarrow R$, such that:
 - μ -unit: $\mu(1, r) \downarrow$ and $\mu(1, r) = r$
 - μ -composition: if $\mu(a_1, r) \downarrow$ and $\mu(a_2, \mu(a_1, r)) \downarrow$ then $\mu(a_1 \odot a_2, r) \downarrow$ and $\mu(a_1 \odot a_2, r) = \mu(a_2, \mu(a_1, r))$

Denotations:

-
$$r, s \xrightarrow{a} r', s'$$
 iff $\mu(a, r) \downarrow, \mu(a, r) = r'$ and $s ||a\rangle s'$
- $r, s \rightsquigarrow r', s'$ iff $r, s \xrightarrow{a_0} r_1, s_1 \xrightarrow{a_1} \dots \xrightarrow{a_{n-1}} r_n, s_n \xrightarrow{a_n} r', s'$

DMBI Logic - Semantics

Semantics

•
$$\mu$$
-Model: $\mathcal{K} = (\mathcal{M}, \llbracket \cdot \rrbracket, |\cdot|, \vDash_{\mathcal{K}})$

- $r, s \vDash_{\mathcal{K}} p$ iff $(r, s) \in \llbracket p \rrbracket$
- $r, s \vDash_{\mathcal{K}} \perp$ never
- $r, s \vDash_{\mathcal{K}} I$ iff r = e
- $r, s \vDash_{\mathcal{K}} \phi \rightarrow \psi$ iff $r, s \vDash_{\mathcal{K}} \phi \Rightarrow r, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}} \phi * \psi$ iff $\exists r_1, r_2 \in R \cdot r = r_1 \bullet r_2$ and $r_1, s \vDash_{\mathcal{K}} \phi$ and $r_2, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}} \phi \twoheadrightarrow \psi \text{ iff } \forall r' \in R \cdot r', s \vDash_{\mathcal{K}} \phi \Rightarrow r \bullet r', s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}} \langle a \rangle \phi \text{ iff } \exists r' \in R \cdot \exists s' \in S \cdot r, s \xrightarrow{|a|} r', s' \text{ and } r', s' \vDash_{\mathcal{K}} \phi$
- $\label{eq:relation} \mathsf{-} r, s \vDash_{\mathcal{K}} \Diamond \phi \text{ iff } \exists r' \in R \cdot \exists s' \in S \cdot r, s \rightsquigarrow r', s' \text{ and } r', s' \vDash_{\mathcal{K}} \phi$
- Validity: ϕ is valid iff $r, s \vDash_{\mathcal{K}} \phi$ for any \mathcal{K} , r and s

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

◆□> ◆舂> ◆注> ◆注> 注目

Concurrent processes modelling

• A user gives a description \mathcal{D} of *n* concurrent processes $(P_1, ..., P_n)$, where $n \ge 1$:

 $\mathcal{D} = (R_{atom}, Act_{atom}, \mu_{pre}, \mu_{post}, \{P_1, ..., P_n\})$, such that:

- R_{atom} is a set of atomic resources
- Actatom is a set of atomic actions

-
$$\mu_{pre}$$
 : $Act_{atom} \rightarrow \mathfrak{M}(R_{atom})$
 $\Rightarrow \mu_{pre}(a)$ is the multiset of resources *consumed* when
a process performs the action a

- μ_{post} : $Act_{atom} \rightarrow \mathfrak{M}(R_{atom})$ $\Rightarrow \mu_{post}(a)$ is the multiset of resources *produced* when a process performs the action *a*
- $P_i = (S_i, \rightarrow_{P_i})$ are processes: S_i is the set of states of P_i and $\rightarrow_{P_i} \subseteq S_i \times Act_{atom} \times S_i$ is the transition relation of P_i
- ► We aim to construct a μ -model that models \mathcal{D}

Concurrent processes modelling - Resources

- Denotations for resources:
 - $\mathfrak{M}(R_{atom})$ is the set of all multisets over R_{atom} (functions $R_{atom} \rightarrow \mathbb{N}$)
 - e is the empty multisets ($orall r \in R_{atom} \cdot e(r) = 0$)
 - $R_1 \leq R_2$ iff $R_1(r) \leqslant R_2(r)$ for all $r \in R_{atom}$
 - $R_1+R_2=R_3$ such that $R_3(r)=R_1(r)+R_2(r)$ for all $r\in R_{atom}$
 - $R_1 R_2 = R_3$ such that $R_3(r) = R_1(r) R_2(r)$ for all $r \in R_{atom}$ Remark: $R_1 - R_2$ is defined iff $R_2 \leq R_1$.

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

Concurrent processes modelling - System transitions

• Two denotations for behaviour of the system:

$$- R \begin{cases} s_1 \xrightarrow{a_1} P_1 & s'_1 \\ \vdots & \vdots \\ s_n \xrightarrow{a_n} P_n & s'_n \end{cases} R' \quad \text{iff} \\ \mu_{pre}(a_1) + \dots + \mu_{pre}(a_n) \le R \text{ and} \\ R' = R - \mu_{pre}(a_1) - \dots - \mu_{pre}(a_n) + \mu_{post}(a_1) + \dots + \mu_{post}(a_n) \\ \text{and } s_i \xrightarrow{a_i} P_i s'_i \text{ for all } i \in \{1, \dots, n\}. \end{cases}$$

$$- R \begin{cases} s_1 & - \rightarrow P_1 & s'_1 \\ \vdots & \vdots \\ s_n & - \rightarrow P_n & s'_n \end{cases} R' \quad \text{iff} \\ \begin{cases} s_1 & \overrightarrow{a_1} & s_1^1 \\ \vdots & \vdots \\ s_n & \overrightarrow{a_p} & s_n^1 \end{cases} R_1 \dots R_{k-1} \begin{cases} s_1^{k-1} & \frac{a_1^k}{a_1} & s'_1 \\ \vdots & \vdots \\ s_n^{k-1} & \overrightarrow{a_p} & s'_n \end{cases} R'$$

Concurrent processes modelling - Synchronous/Asynchronous

- Synchronous VS asynchronous processes:
 - At each transition all processes perform an action:
 ⇒ synchronous processes
 - How to model asynchronous processes?
 - By considering an atomic action skip

-
$$\mu_{\textit{pre}}(\textit{skip}) = \mu_{\textit{post}}(\textit{skip}) = e$$

- $s_i \stackrel{skip}{\twoheadrightarrow}_{P_i} s_i$ for all processes P_i and all states $s_i \in S_i$

- Example:
$$R \left\{ \begin{array}{cc} s_1 & \stackrel{a_1}{\longrightarrow}_{P_1} & s'_1 \\ s_2 & \stackrel{a_2}{\longrightarrow}_{P_2} & s_2 \\ s_3 & \stackrel{a_3}{\longrightarrow}_{P_3} & s'_3 \end{array} \right\} R'$$

 \Rightarrow only P_1 and P_3 perform an action in this step

Concurrent processes modelling - Actions

- Denotations for actions:
 - We define $Act^{\#}_{atom} = \{a_1 \# ... \# a_n \mid a_1, ..., a_n \in Act_{atom}\}$

 $\Rightarrow a_1 \# a_2$ is a *concurrent atomic action* where P_1 performs a_1 and P_2 performs a_2 .

We define L(Act[#]_{atom}) the set of all lists built on Act[#]_{atom}:
For example [a₁#a₂#a₃; a'₁#a'₂#a'₃] is an action that consists to perform a₁#a₂#a₃ and then a'₁#a'₂#a'₃

- [] is the empty list
- \oplus is the concatenation of lists

Propositions

1 $\mathcal{R} = (\mathfrak{M}(R_{atom}), +, e)$ is a resource monoid.

2 $\mathcal{A} = (\mathfrak{L}(\mathsf{Act}^\#_{\mathsf{atom}}), \oplus, [])$ is an action monoid

Concurrent processes modelling - States and the μ function

Denotations for states:

- $S^{\#} = \{s_1 \# ... \# s_n \mid s_i \in S_i \text{ for any } 1 \leqslant i \leqslant n\}$

 $\Rightarrow s_1 \# s_2$ is the state such that P_1 is in state s_1 and P_2 is in state s_2 .

• Denotations for the μ function:

 $- \mu^{\#} : Act_{atom}^{\#} \times \mathfrak{M}(R_{atom}) \rightharpoonup \mathfrak{M}(R_{atom})$ $\mu^{\#}(a_{1}\#...\#a_{n}, R) = \begin{cases} \uparrow \text{ if } \mu_{pre}(a_{1}) + ... + \mu_{pre}(a_{n}) \leq R\\ R - \mu_{pre}(a_{1}) - ... - \mu_{pre}(a_{n})\\ + \mu_{post}(a_{1}) + ... + \mu_{post}(a_{n}) & \text{ otherwise} \end{cases}$

- μ_{list} : $\mathfrak{L}(Act^{\#}_{atom}) \times \mathfrak{M}(R_{atom}) \rightharpoonup \mathfrak{M}(R_{atom})$

$$\mu_{list}(L,R) = \begin{cases} R & \text{if } L = [] \\ \uparrow & \text{if } L = [A_1; ...; A_k] \text{ and } \mu^{\#}(A_1, R) \uparrow \\ \mu_{list}([A_2; ...; A_k], \mu^{\#}(A_1, R)) & \text{where } L = [A_1; ...; A_k] \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Concurrent processes modelling - State/resource relation

Denotations for the relation on states and resources:

-
$$|\cdot\rangle^{\#}: S^{\#} \times Act^{\#}_{atom} \times S^{\#}$$

 $s_1 \# ... \# s_n |a_1 \# ... \# a_n \rangle^{\#} s'_1 \# ... \# s'_n \text{ iff } s_i \stackrel{a_i}{\to}_{P_i} s'_i \text{ for all } 1 \leqslant i \leqslant n$

$$\begin{array}{l} - \ |\cdot\rangle_{\mathit{list}} : S^{\#} \times \mathfrak{L}(\mathit{Act}^{\#}_{\mathit{atom}}) \times S^{\#} \\ \\ S \mid [A_1; ...; A_k] \rangle_{\mathit{list}} S' \ \text{iff} \ S \mid A_1 \rangle^{\#} S_1 \mid A_2 \rangle^{\#} ... \mid A_{k-1} \rangle^{\#} S_{k-1} \mid A_k \rangle^{\#} S' \end{array}$$

Lemma

Let
$$\mathcal{D} = (R_{atom}, Act_{atom}, \mu_{pre}, \mu_{post}, \{P_1, ..., P_n\})$$
, where $P_i = (S_i, \rightarrow_{P_i})$.
 $\mathcal{M} = (\mathcal{R}, \mathcal{A}, S^{\#}, |\cdot\rangle_{list}, \mu_{list})$, where $\mathcal{R} = (\mathfrak{M}(R_{atom}), +, e)$ and where $\mathcal{A} = (\mathfrak{L}(Act_{atom}^{\#}), \oplus, [])$ is a μ -DRM.

◆□▶ ◆□▶ ◆目▶ ◆日▶ ◆□ ◆ ◇◇◇

Concurrent processes modelling - Reachability/Satisfiability

Denotations:

$$- \llbracket \cdot \rrbracket : \operatorname{Prop} \to \mathbb{P}(\mathfrak{M}(R_{atom}) \times S^{\#})$$
$$\llbracket r_i \rrbracket = \{(\{r_i\}, s) \mid s \in S^{\#}\}$$
$$- \mid \cdot \mid : S_{Act} \to \mathfrak{L}(Act_{atom}^{\#})$$
$$\mid a_1 \# ... \# a_n \mid = [a_1 \# ... \# a_n]$$
$$- \widehat{\cdot} : \mathfrak{M}(R_{atom}) \to \mathcal{L}:$$
$$\widehat{R} = \begin{cases} I & \text{if } R = e \\ r_1 * ... * r_k & \text{if } R = \{r_1, ..., r_k\} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Concurrent processes modelling - Reachability/Satisfiability

Lemma

$$R \left\{ \begin{array}{ccc} s_1 & \xrightarrow{a_1} & s'_1 \\ \vdots & & \vdots \\ s_n & \xrightarrow{a_n} & s'_n \end{array} \right\} R' \text{ iff } R, s_1 \# \dots \# s_n \xrightarrow{[a_1 \# \dots \# a_n]} R', s'_1 \# \dots \# s'_n$$

Lemma

$$R \left\{ \begin{array}{ccc} s_1 & \dashrightarrow P_1 & s'_1 \\ \vdots & & \vdots \\ s_n & \dashrightarrow P_n & s'_n \end{array} \right\} R' \quad \text{iff} \quad R, s_1 \# \dots \# s_n \rightsquigarrow R', s'_1 \# \dots \# s'_n$$

Concurrent processes modelling - Reachability/Satisfiability

Theorem

$$R \left\{ \begin{array}{ccc} s_1 & \stackrel{a_1}{\longrightarrow} P_1 & s'_1 \\ \vdots & & \vdots \\ s_n & \stackrel{a_n}{\longrightarrow} P_n & s'_n \end{array} \right\} R' \text{ iff } R, s_1 \# ... \# s_n \vDash_{\mathcal{K}} \langle a_1 \# ... \# a_n \rangle \widehat{R'}$$

Theorem

$$R\left\{\begin{array}{ccc} s_1 & \cdots & s_1' \\ \vdots & & \vdots \\ s_n & \cdots & s_n \\ \end{array}\right\} R' \quad \text{iff} \quad R, s_1 \# \dots \# s_n \vDash_{\mathcal{K}} \Diamond \widehat{R'}$$

Concurrent processes modelling - Mutual exclusion

- Mutual exclusion (revisited): $\mathcal{D} = (R_{atom}, Act_{atom}, \mu_{pre}, \mu_{post}, \{P_1, P_2\}),$ where: - $R_{atom} = \{J\}$ - $Act_{atom} = \{a_{nc}, a_{c}, a_{n}, a_{v}\}$ - μ_{pre} is defined by: - $\mu_{pre}(a_{nc}) = \mu_{pre}(a_c) = \mu_{pre}(a_v) = e$ - $\mu_{pre}(a_p) = J$ - μ_{post} is defined by: - $\mu_{post}(a_{nc}) = \mu_{post}(a_c) = \mu_{post}(a_n) = e$ - $\mu_{post}(a_v) = J$
 - $P_1 = (S_1, \rightarrow_{P_1})$ and $P_2 = (S_2, \rightarrow_{P_2})$ such that: - $S_1 = S_2 = \{s_{nc}, s_c\}$ - For any $i \in \{1, 2\}$, we have: $s_{nc} \xrightarrow{a_{nc}} P_i s_{nc} \quad s_{nc} \xrightarrow{a_p} P_i s_c \quad s_c \xrightarrow{a_c} P_i s_{nc}$

Concurrent processes modelling - Mutual exclusion

Mutual exclusion (revisited):

- We construct $\mathcal{M} = (\mathcal{R}, \mathcal{A}, S^{\#}, |\cdot\rangle_{list}, \mu_{list})$, where $\mathcal{R} = (\mathfrak{M}(R_{atom}), +, e)$ and where $\mathcal{A} = (\mathfrak{L}(Act^{\#}_{atom}), \oplus, [])$
- "After performing any succession of actions, the processes can not perform together a critical action":

$$\{J\}, s_{nc} \# s_{nc} \vDash_{\mathcal{K}} \Box [a_c \# a_c] \bot$$

- "It is impossible to reach a state such that more than one token is available":

$$\{J\}, s_{nc} \# s_{nc} \vDash_{\mathcal{K}} \neg \Diamond (J * J * \top)$$

- We observe that DMBI:
 - captures resource transformation (pprox DBI) (pprox MBI)
 - expresses properties on any reachable states ($pprox \mathsf{DBI}$) ($ot\approx \mathsf{MBI}$)

3

- does not model capture process production (≉ MBI)

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

◆□> ◆舂> ◆注> ◆注> 注目

An extension of **BI** calculus (Galmiche-Méry-Pym 2005) based on constrained set of statements (CSS in Larchey 2012)

- Resource labels (*R*), action labels (*Act*) and state labels (*S*)
- Resource constraints (=), μ-constraints (μ) and transition constraints (||.))
- Signed formulae: $\mathbb{S}\phi$: (x, u)
- Branches are denoted $\langle \mathcal{F}, \mathcal{C} \rangle$ where \mathcal{C} is a set of resource, transition and μ constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assertions/requirements

DMBI Proof theory - Tableaux method

Labels

■ **Resource labels** (*L_r*):

$$X ::= 1_r \mid c_i \mid X \circ X$$

where $c_i \in \gamma_r = \{c_1, c_2, ...\}$ and \circ is a function on L_r that is associative, commutative and 1_r is its unit. $x \circ y$ is denoted xy.

Action labels (*L_a*):

$$X ::= 1_a \mid a_i \mid d_i \mid X \cdot X$$

where $a_i \in S_{Act}$, $d_i \in \gamma_a = \{d_1, d_2, ...\}$, $S_{Act} \cap \gamma_a = \emptyset$ and \cdot is a function on L_a that is associative (not commutative) and 1_a is its unit. $f \cdot g$ is denoted fg.

• State labels (L_s) : $L_s = \{l_1, l_2, ...\}$.

DMBI Proof theory - Tableaux method

Constraints

- Resource constraints:
 - encode equality on resources.
 - $x \sim y$ where x and y are resource labels.
- μ-constraints:
 - encode the function μ .
 - $x \xrightarrow{f} y$ where x and y are resource labels and f is an action label.
- Transition constraints:
 - Encode the function $\|\cdot\rangle$.
 - $u \xrightarrow{f} v$ where u and v are state labels and f is an action label.

Constraint closure

Rules that product resource constraints:

$$\frac{1_{r} \sim 1_{r}}{1_{r} \sim 1_{r}} \langle 1_{r} \rangle \qquad \frac{x \sim y}{y \sim x} \langle s_{r} \rangle \qquad \frac{xy \sim xy}{x \sim x} \langle d_{r} \rangle$$

$$\frac{x \sim y}{x \sim z} \langle y \sim z}{y \sim z} \langle t_{r} \rangle \qquad \frac{x \sim x' \quad y \sim y'}{xy \sim x'y'} \langle g_{r} \rangle$$

$$\frac{x \stackrel{f}{\longrightarrow} y}{y \sim z} \langle k_{r} \rangle \qquad \frac{x \stackrel{f}{\longrightarrow} y}{x \sim x} \langle a_{r_{1}} \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DMBI Proof theory - Tableaux method

Constraint closure

Rules that product µ-constraints:

$$\frac{x \sim x}{\stackrel{1_a}{x \twoheadrightarrow x}} \langle 1_{\mu} \rangle \qquad \qquad \frac{x \stackrel{t}{\twoheadrightarrow} y \quad y \stackrel{g}{\twoheadrightarrow} z}{\stackrel{fg}{x \twoheadrightarrow z}} \langle t_{\mu} \rangle$$

~

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\frac{x \xrightarrow{f} y \quad x \sim x'}{x' \xrightarrow{f} y} \langle k_{\mu_1} \rangle \qquad \qquad \frac{x \xrightarrow{f} y \quad y \sim y'}{x \xrightarrow{f} y'} \langle k_{\mu_2} \rangle$$

Rules that product transition constraints:

 $\begin{array}{c|c} \underline{u \xrightarrow{f} v} \\ \hline u \xrightarrow{1_{a}} u \end{array} \langle 1_{t_{1}} \rangle \qquad \qquad \underline{u \xrightarrow{f} v} \\ \hline v \xrightarrow{1_{a}} v \rangle \langle 1_{t_{2}} \rangle \qquad \qquad \underline{u \xrightarrow{f} v v \xrightarrow{g} w} \\ \hline u \xrightarrow{fg} w \rangle \langle t_{t} \rangle \end{array}$

DMBI Tableaux method

Modal rules

Assertion rules:

Introduction of new labels and assertions (or constraints)

$$\frac{\mathbb{T}\langle f \rangle \phi : (\mathbf{x}, u) \in \mathcal{F}}{\langle \{\mathbb{T}\phi : (\mathbf{c}_i, l_i)\}, \{\mathbf{x} \xrightarrow{f} \mathbf{c}_i, u \xrightarrow{f} l_i\} \rangle} \langle \mathbb{T}\langle - \rangle \rangle} \\
\frac{\mathbb{T}\langle \phi : (\mathbf{c}_i, l_i)\}, \{\mathbf{x} \xrightarrow{d_i} \mathbf{c}_i, u \xrightarrow{d_i} l_i\} \rangle}{\langle \{\mathbb{T}\phi : (\mathbf{c}_i, l_i)\}, \{\mathbf{x} \xrightarrow{d_i} \mathbf{c}_i, u \xrightarrow{d_i} l_i\} \rangle} \langle \mathbb{T} \rangle \rangle}$$

Requirement rules:

Conditions that must be verified in the closure of constraints

$$\frac{\mathbb{F}\langle f \rangle \phi : (x, u) \in \mathcal{F} \text{ and } x \xrightarrow{f} y \in \overline{\mathcal{C}} \text{ and } u \xrightarrow{f} v \in \overline{\mathcal{C}}}{\langle \mathbb{F}\phi : (y, v), \emptyset \rangle} \langle \mathbb{F}\langle - \rangle \rangle$$

$$\frac{\mathbb{F}\Diamond\phi:(x,u)\in\mathcal{F}\text{ and }x\xrightarrow{f}y\in\overline{\mathcal{C}}\text{ and }u\xrightarrow{f}v\in\overline{\mathcal{C}}}{\langle\{\mathbb{F}\phi:(y,v)\},\emptyset\rangle}\langle\mathbb{F}\Diamond\rangle$$

Definition: closed branch

A CSS (branch) $\langle \mathcal{F}, \mathcal{C} \rangle$ is **closed** iff one of these conditions holds:

- $\mathbb{T}\phi: (x, u) \in \mathcal{F}$, $\mathbb{F}\phi: (y, u) \in \mathcal{F}$ and $x \sim y \in \overline{\mathcal{C}}$
- $\mathbb{F}I: (x, u) \in \mathcal{F} \text{ and } 1_r \sim x \in \overline{\mathcal{C}}$

•
$$\mathbb{T} \perp : (x, u) \in \mathcal{F}$$

Definition: μ -proof

A μ -proof for a formula ϕ is a μ -tableau for ϕ which is closed.

(日) (國) (필) (필) (필) 표

Theorem: soundness

If there exists a $\mu\text{-proof}$ for a formula ϕ then ϕ is valid.

Theorem: completeness

If a formula ϕ is valid then there is a μ -proof for ϕ .

• How to prove
$$\phi \equiv (I \twoheadrightarrow \langle a \rangle \langle b \rangle P) \rightarrow \Diamond P$$
 ?

Step 1: Initialization

$$\begin{split} [\mathcal{F}] & [\mathcal{C}] \\ \mathbb{F}(\mathrm{I} \twoheadrightarrow \langle a \rangle \langle b \rangle P) \to \Diamond P : (c_1, l_1) & c_1 \sim c_1 \quad l_1 \stackrel{l_a}{\rightarrowtail} l_1 \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

$$\begin{split} [\mathcal{F}] & [\mathcal{C}] \\ \checkmark_{1} \mathbb{F}(\mathbf{I} \twoheadrightarrow \langle a \rangle \langle b \rangle P) \to \Diamond P : (c_{1}, l_{1}) & c_{1} \sim c_{1} \\ & \downarrow \\ \mathbb{T}\mathbf{I} \twoheadrightarrow \langle a \rangle \langle b \rangle P : (c_{1}, l_{1}) \\ \mathbb{F} \Diamond P : (c_{1}, l_{1}) \\ \end{split}$$

$$\frac{\mathbb{F}\phi \to \psi : (\mathbf{x}, \mathbf{u}) \in \mathcal{F}}{\langle \{\mathbb{T}\phi : (\mathbf{x}, \mathbf{u}), \mathbb{F}\psi : (\mathbf{x}, \mathbf{u})\}, \emptyset \rangle} \langle \mathbb{F} \to \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Remark: $c_1 \circ 1_r = c_1$

(日) (문) (문) (문) (문)

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ● ● ● ●

$$\frac{\mathbb{T}\langle f\rangle\phi:(x,u)\in\mathcal{F}}{\langle\{\mathbb{T}\phi:(c_i,l_i)\},\{x\stackrel{f}{\twoheadrightarrow}c_i,u\stackrel{f}{\rightarrowtail}l_i\}\rangle}\langle\mathbb{T}\langle-\rangle\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Step 2: Application of rules

The formula $(I \twoheadrightarrow \langle a \rangle \langle b \rangle P) \to \Diamond P$ is valid

◆□▶ ◆舂▶ ◆注≯ ◆注≯ 注 のへぐ

1 Language and semantics

- 2 Expressiveness
- 3 Tableaux method
- 4 Counter-model extraction
- 5 Conclusions Perspectives

◆□> ◆圖> ◆注> ◆注> 注

DMBI Counter-model extraction

Counter-model extraction

Definition: Hintikka CSS

A Hintikka CSS $\langle \mathcal{F}, \mathcal{C} \rangle$ is a unclosed branch such that "all information has been extracted":

$$\mathbb{I} \ \ \mathbb{T}\phi: (x,u) \not\in \mathcal{F} \text{ or } \mathbb{F}\phi: (y,u) \not\in \mathcal{F} \text{ or } x \sim y \not\in \overline{\mathcal{C}}$$

2-12 ...

13 If
$$\mathbb{T}\Diamond\phi: (x, u) \in \mathcal{F}$$
 then $\exists y \in L_r, \exists f \in L_a, \exists v \in L_s, x \xrightarrow{f} y \in \overline{\mathcal{C}}$ and $u \xrightarrow{f} v \in \overline{\mathcal{C}}$ and $\mathbb{T}\phi: (y, v) \in \mathcal{F}$

14 If $\mathbb{F}\Diamond\phi: (x, u) \in \mathcal{F}$ then $\forall y \in L_r$, $\forall f \in L_a$, $\forall v \in L_s$, $(x \xrightarrow{f} y \in \overline{\mathcal{C}}$ and $u \xrightarrow{f} v \in \overline{\mathcal{C}}) \Rightarrow \mathbb{F}\phi: (y, v) \in \mathcal{F}$

◆□> ◆圖> ◆目> ◆目> 三日

Lemma: counter-model extraction

A counter-model can be extracted from a Hintikka branch.

DMBI Counter-model extraction

Counter-model extraction

Function Ω

Let $\langle \mathcal{F}, \mathcal{C} \rangle$ be a Hintikka CSS. $\Omega(\langle \mathcal{F}, \mathcal{C} \rangle) = (\mathcal{M}, \llbracket \cdot \rrbracket, \lvert \cdot \lvert, \vDash_{\mathcal{K}})$, such that:

• $R = \mathcal{D}_r(\overline{\mathcal{C}})/\sim$ $S = \mathcal{A}_s(\mathcal{C})$ $Act = \mathcal{D}_s(\overline{\mathcal{C}}) \cup \{\alpha\}$ (where $\alpha \notin \mathcal{D}_s(\overline{\mathcal{C}})$) • $e = [1_r]$

▶ ▲ 臣 ◆ 臣 ◆ 臣 ◆ 今 ()

- 1 = 1_a
- $\bullet [x] \bullet [y] = [x \circ y]$
- $\mu(a, [x]) = \begin{cases} \uparrow & \text{if } \{y \mid x \xrightarrow{a} y \in \overline{\mathcal{C}}\} = \emptyset \\ \{y \mid x \xrightarrow{a} y \in \overline{\mathcal{C}}\} & \text{otherwise} \end{cases}$
- $s_1 || f \rangle s_2$ iff $s_1 \xrightarrow{f} s_2 \in \overline{\mathcal{C}}$
- For all $a_1, a_2 \in Act$, $a_1 \odot a_2 = \begin{cases} a_1 \cdot a_2 & \text{if } a_1 \cdot a_2 \in \mathcal{D}_a(\overline{\mathcal{C}}) \\ \alpha & \text{otherwise} \end{cases}$
- For all $a \in S_{Act}$, $|a| = \begin{cases} a & \text{if } a \in \mathcal{D}_a(\overline{\mathcal{C}}) \\ \alpha & \text{otherwise} \end{cases}$
- $([x], s) \in \llbracket P \rrbracket$ iff $\exists y \in L_r, x \in [y]$ and $\mathbb{T}P : (y, s) \in \mathcal{F}$

1 Language and semantics

- 2 Expressiveness
- 3 Tableaux method
- 4 Counter-model extraction
- 5 Conclusions Perspectives

Conclusions

A modal extension of \boldsymbol{BBI} for resource transformations

- That captures resource transformations (pprox MBI)
- That includes modalities \Diamond and \Box (\approx **DBI**)
- That has a sound and complete calculus with a countermodel extraction method
- That can express properties resources produced by *n* concurrent processes that manipulate these resources

Future works

- Study is **DMBI** can capture process production
- Study extension of DMBI with locations and provide a sound and complete calculus

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Study other extension to express properties on:
 - Webservices
 - Protocols
 - ...