Axiomatization/completeness of propositional dynamic logic with separation and parallel composition

CNAE-ANPT + UPB - UTH - UTM

Contents

1. Introduction and motivations
2. Algebras of binary relations and relation algebras
3. Proper and abstract fork algebras
4. Separation and parallel composition
5. $P D L_{0}^{\Delta}$
6. Axiomatization/completeness
7. Open problems

Introduction and motivations

Binary relations

Algebra of subrelations of an equivalence relation E on some set A

- set of subrelations of E that is closed for the following operations
- 0, empty binary relation
- - R, complement of a binary relation R wrt E
- $R \cup S$, union of binary relations R and S
- Id, identity binary relation on A
- R^{-1}, transposition of a binary relation R
- $R \circ S$, composition of binary relations R and S

Introduction and motivations

Binary relations

Tarski (1954)

- the class of all algebra of binary relations is axiomatizable by a set of equations
- is the class of all algebra of binary relations axiomatizable by a finite set of equations?
Monk (1964)
- NO

Bibliography
Monk, J.: On representable relation algebras. Michigan
Mathematical Journal 11 (1964) 207-210.

Introduction and motivations

In order to overcome this drawback

- an extra binary operation on relations called fork is added

Addition of fork has the following consequence

- the class of algebras obtained can be axiomatized by a finite set of equations

Introduction and motivations

Fork

Algebra of subrelations of an equivalence relation E on some set A closed under a binary function *

- $R_{\underline{\nabla}} S$, fork of binary relations R and S

The definition of the operation fork is given by

- $R_{\underline{\nabla}} S=\{(u, v * w): u R v$ and $u S w\}$

Bibliography
Frias, M., Baum, G., Hæberer, A., Veloso, P.: Fork algebras are representable. Bulletin of the Section of Logic 24 (1995) 64-75.
Frias, M., Hæberer, A., Veloso, P.: A finite axiomatization for fork algebras. Logic Journal of the IGPL 5 (1997) 311-319.

Algebras of binary relations and relation algebras

History and definitions

$\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ\right)$ is an algebra of binary relations if there exists an equivalence relation E on some set A such that

- \mathcal{R} is a set of subrelations of E that is closed under $0,-, \cup$, Id, ${ }^{-1}$, ○

Algebras of binary relations and relation algebras

 History and definitions$\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ\right)$ is a relation algebra if

- $(\mathcal{R}, 0,-, \cup)$ is a Boolean algebra
- $x^{-1-1}=x$
- $(x \cup y)^{-1}=x^{-1} \cup y^{-1}$
- $(x \circ y)^{-1}=y^{-1} \circ x^{-1}$
- $(x \cup y) \circ z=(x \circ z) \cup(y \circ z)$
- $(x \circ y) \circ z=x \circ(y \circ z)$
- $x \circ l d=I d \circ x=x$
- $(x \circ y) \cap z=0$ iff $\left(z \circ y^{-1}\right) \cap x=0$ iff $\left(x^{-1} \circ z\right) \cap y=0$

Algebras of binary relations and relation algebras

History and definitions

Tarski (1941)

- every algebra of binary relations is a relation algebra
- is every relation algebra isomorphic to an algebra of binary relations?

Lyndon (1950)

- NO

Bibliography
Lyndon, R.: The representation of relational algebras. Annals of Mathematics 51 (1950) 707-729.

Proper and abstract fork algebras

On the origin of fork algebras

Let \neq be

- - Id

Consider the formula

- $\forall u \forall v \forall w \exists a(a \neq u \wedge a \neq v \wedge a \neq w)$

Suppose

- \mathcal{R} is a set of subrelations of an equivalence relation E on A that is closed under $0,-, \cup, I d,{ }^{-1}$, \circ
- $*: A \times A \rightarrow A$ is injective and surjective
- \mathcal{R} is closed under $\underline{\nabla}$ where $R_{\underline{\nabla}} S=\{(u, v * w): u R v$ and $u S w\}$

Proper and abstract fork algebras

On the origin of fork algebras

The following are equivalent

- $\forall u \forall v \forall w \exists a(a \neq u \wedge a \neq v \wedge a \neq w)$
- $\forall u \forall v \forall w \exists a(a \neq u \wedge a(\neq \underline{\nabla} \neq) v * w)$
- $\forall u \forall v \forall w \exists a\left(u \not \neq^{-1} a \wedge a(\neq \underline{\nabla} \neq) v * w\right)$
- $\forall u \forall v \forall w\left(u\left(\not \neq^{-1} \circ(\neq \nabla \neq)\right) v * w\right)$
- $\forall u \forall v \forall w\left(u\left(\not \mathcal{F}^{-1} \circ(\neq \underline{\nabla} \neq)\right) v * w \leftrightarrow u 1 v \wedge u 1 w\right)$
- $\forall u \forall v \forall w\left(u\left(\not \mathcal{F}^{-1} \circ(\neq \underline{\nabla} \neq)\right) v * w \leftrightarrow u(1 \underline{\nabla} 1) v * w\right)$
- $\left(\neq^{-1} \circ(\neq \nabla \neq)\right)=(1 \underline{\nabla} 1)$

Proper and abstract fork algebras

On the origin of fork algebras

Development of the classes of proper and abstract fork algebras

- Hæberer and Veloso (1991), Veloso et al. (1992): $u * v=$ the tree with subtrees u and v
- Veloso and Hæberer (1991): $u * v=$ concatenation of the finite strings u and v

Proper and abstract fork algebras

Definition of the classes

$\left(\mathcal{R}, A, 0,-, \cup, I d,,^{-1}, \circ, \underline{\nabla}, *\right)$ is a proper fork algebra if

- \mathcal{R} is a set of subrelations of an equivalence relation E on A that is closed under $0,-, \cup, I d,{ }^{-1}$, ○
- $*: A \times A \rightarrow A$ is injective
- \mathcal{R} is closed under $\underline{\nabla}$ where $R \underline{\nabla} S=\{(u, v * w): u R v$ and $u S w\}$

Proper and abstract fork algebras

Definition of the classes

$\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ, \underline{\nabla}\right)$ is an abstract fork algebra if

- $\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ\right)$ is a relation algebra
- $x \underline{\nabla} y=(x \circ(l d \underline{\nabla} 1)) \cap(y \circ(1 \underline{\nabla} l d))$
- $(x \underline{\nabla} y) \circ(z \underline{\nabla} t)^{-1}=\left(x \circ z^{-1}\right) \cap\left(y \circ t^{-1}\right)$
- $(I d \underline{\nabla} 1)^{-1} \underline{\nabla}(1 \underline{\nabla} I d)^{-1} \leq I d$

Cross is defined by the equation

- $x \otimes y::=\left((I d \underline{\nabla} 1)^{-1} \circ x\right) \underline{\nabla}\left((1 \underline{\nabla} I d)^{-1} \circ y\right)$

Proper and abstract fork algebras

Definition of the classes

Theorem

- every proper fork algebra is an abstract fork algebra
- every abstract fork algebra is isomorphic to a proper fork algebra

Bibliography
Frias, M., Baum, G., Hæberer, A., Veloso, P.: Fork algebras are representable. Bulletin of the Section of Logic 24 (1995) 64-75.
Frias, M., Hæberer, A., Veloso, P.: A finite axiomatization for fork algebras. Logic Journal of the IGPL 5 (1997) 311-319.

Separation and parallel composition

PRSPDL : syntax

Syntax

```
- \(\alpha, \beta::=\boldsymbol{a}|\phi ?| \boldsymbol{s}_{1}\left|\mathbf{s}_{2}\right| r_{1}\left|r_{2}\right|(\alpha ; \beta)|(\alpha \cup \beta)| \alpha^{\star} \mid(\alpha| | \beta)\)
- \(\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi\)
```

Bibliography
Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.

Separation and parallel composition

PRSPDL: semantics

Models

- a model is a structure of the form $\mathcal{M}=(W, R, *, V)$ where
- W is a nonempty set of states
- R is a function $a \mapsto R(a) \subseteq W \times W$
- * is a ternary relation over W
- V is a function $p \mapsto V(p) \subseteq W$

Truth conditions

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(p)^{\mathcal{M}}=V(p)$
- $(\perp)^{\mathcal{M}}$ is empty
- $(\neg \phi)^{\mathcal{M}}=W \backslash(\phi)^{\mathcal{M}}$
- $(\phi \vee \psi)^{\mathcal{M}}=(\phi)^{\mathcal{M}} \cup(\psi)^{\mathcal{M}}$
- $([\alpha] \phi)^{\mathcal{M}}=\left\{x\right.$: for all $y \in W$, if $\left.x(\alpha)^{\mathcal{M}} y, y \in(\alpha)^{\mathcal{M}}\right\}$

Separation and parallel composition

PRSPDL : semantics

Truth conditions according to Benevides et al. (2011)

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(a)^{\mathcal{M}}=R(a)$
- $(\phi \text { ? })^{\mathcal{M}}=\left\{(x, y): x=y\right.$ and $\left.y \in(\phi)^{\mathcal{M}}\right\}$
- $\left(s_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(x, z)\}$
- $\left(s_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(z, x)\}$
- $\left(r_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(y, z)\}$
- $\left(r_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(z, y)\}$
- $(\alpha ; \beta)^{\mathcal{M}}=\left\{(x, y)\right.$: there exists $z \in W$ such that $x(\alpha)^{\mathcal{M}} z$ and $\left.z(\beta)^{\mathcal{M}} y\right\}$
- $(\alpha \cup \beta)^{\mathcal{M}}=(\alpha)^{\mathcal{M}} \cup(\beta)^{\mathcal{M}}$
- $\left(\alpha^{\star}\right)^{\mathcal{M}}=\{(x, y)$: there exists $n \in \mathbb{N}$ and there exists $z_{0}, \ldots, z_{n} \in W$ such that $\left.x=z_{0}(\alpha)^{\mathcal{M}} \ldots(\alpha)^{\mathcal{M}} z_{n}=y\right\}$
- $(\alpha \| \beta)^{\mathcal{M}}=\{(x, y)$: there exists $z, t, u, v \in W$ such that $x *(z, t), y *(u, v), z(\alpha)^{\mathcal{M}} u$ and $\left.t(\beta)^{\mathcal{M}} v\right\}$

Separation and parallel composition

PRSPDL: semantics

Truth conditions according to Frias (2002)

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(a)^{\mathcal{M}}=R(a)$
- $(\phi \text { ? })^{\mathcal{M}}=\left\{(x, y): x=y\right.$ and $\left.y \in(\phi)^{\mathcal{M}}\right\}$
- $\left(s_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(x, z)\}$
- $\left(s_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y *(z, x)\}$
- $\left(r_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(y, z)\}$
- $\left(r_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x *(z, y)\}$
- $(\alpha ; \beta)^{\mathcal{M}}=\left\{(x, y)\right.$: there exists $z \in W$ such that $x(\alpha)^{\mathcal{M}} z$ and $\left.z(\beta)^{\mathcal{M}} y\right\}$
- $(\alpha \cup \beta)^{\mathcal{M}}=(\alpha)^{\mathcal{M}} \cup(\beta)^{\mathcal{M}}$
- $\left(\alpha^{\star}\right)^{\mathcal{M}}=\{(x, y)$: there exists $n \in \mathbb{N}$ and there exists $z_{0}, \ldots, z_{n} \in W$ such that $\left.x=z_{0}(\alpha)^{\mathcal{M}} \ldots(\alpha)^{\mathcal{M}} z_{n}=y\right\}$
- $(\alpha \| \beta)^{\mathcal{M}}=\{(x, y)$: there exists $z, t \in W$ such that $y *(z, t), x(\alpha)^{\mathcal{M}} z$ and $\left.x(\beta)^{\mathcal{M}} t\right\}$

Separation and parallel composition

PRSPDL : classes of models

A model $\mathcal{M}=(W, R, *, V)$ is said to be separated iff

- if $x *(y, z)$ and $x *(t, u), y=t$ and $z=u$

A model $\mathcal{M}=(W, R, *, V)$ is said to be deterministic iff

- if $x *(z, t)$ and $y *(z, t), x=y$

A model $\mathcal{M}=(W, R, *, V)$ is said to be serial iff

- $*(x, y)$ is nonempty

In a separated model $\mathcal{M}=(W, R, *, V)$ we have

- if $x\left(s_{1}\right)^{\mathcal{M}} z$ and $z\left(r_{1}\right)^{\mathcal{M}} y, x=y$
- if $x\left(s_{2}\right)^{\mathcal{M}} z$ and $z\left(r_{2}\right)^{\mathcal{M}} y, x=y$

In a deterministic separated model $\mathcal{M}=(W, R, *, V)$ we have

- if $x\left(r_{1}\right)^{\mathcal{M}} z, z\left(s_{1}\right)^{\mathcal{M}} y, x\left(r_{2}\right)^{\mathcal{M}} t$ and $t\left(s_{2}\right)^{\mathcal{M}} y, x=y$

Separation and parallel composition

PRSPDL : expressivity

Syntax

- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|\boldsymbol{s}_{1}\right| \boldsymbol{s}_{2}\left|r_{1}\right| r_{2}|(\alpha ; \beta)|(\alpha \cup \beta)\left|\alpha^{\star}\right|(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

For all $i \in\{1,2\}$ and for all s_{i}-free programs α

- the programs s_{i} and α are not equally interpreted in all separated models

For all $i \in\{1,2\}$ and for all r_{i}-free programs α

- the programs r_{i} and α are not equally interpreted in all separated models

Separation and parallel composition

PRSPDL : expressivity

Syntax

- $\alpha, \beta::=a|\phi ?| s_{1}\left|s_{2}\right| r_{1}\left|r_{2}\right|(\alpha ; \beta)|(\alpha \cup \beta)| \alpha^{\star} \mid(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

For all atomic programs a, b and for all $\|$-free programs α

- the programs a\|b and α are not equally interpreted in all separated models

Separation and parallel composition

PRSPDL : expressivity

Syntax

- $\alpha, \beta::=\mathbf{a}|\phi ?| \mathbf{s}_{1}\left|\mathbf{s}_{2}\right| r_{1}\left|r_{2}\right|(\alpha ; \beta)|(\alpha \cup \beta)| \alpha^{\star} \mid(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

The following expressions are equally interpreted in all separated models for each programs α, β, for each formulas ϕ and for each atomic formulas p not occurring in α, β, ϕ

- $\langle\alpha \| \beta\rangle \phi$
- $\forall p\left(\left\langle r_{1}\right\rangle\langle\alpha\rangle\left\langle s_{1}\right\rangle(\phi \wedge p) \vee\left\langle r_{2}\right\rangle\langle\beta\rangle\left\langle s_{2}\right\rangle(\phi \wedge \neg p)\right)$

Separation and parallel composition

$P R S P D L$: a simple fragment

Restriction of the syntax

> - $\alpha, \beta::=a\left|s_{1}\right| s_{2}\left|r_{1}\right| r_{2}|(\alpha ; \beta)|(\alpha \cup \beta)$
> - $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Bibliography
Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.

Separation and parallel composition

PRSPDL : a simple fragment

Axiomatization

- all tautologies modus ponens necessitation
- $[\alpha](\phi \rightarrow \psi) \rightarrow([\alpha] \phi \rightarrow[\alpha] \psi)$
- $\left\langle r_{1}\right\rangle \phi \rightarrow\left[r_{1}\right] \phi \quad\left\langle r_{2}\right\rangle \phi \rightarrow\left[r_{2}\right] \phi$
- $\phi \rightarrow\left[s_{1}\right]\left\langle r_{1}\right\rangle \phi \quad \phi \rightarrow\left[s_{2}\right]\left\langle r_{2}\right\rangle \phi \quad \phi \rightarrow\left[r_{1}\right]\left\langle s_{1}\right\rangle \phi \quad \phi \rightarrow\left[r_{2}\right]\left\langle s_{2}\right\rangle \phi$
- $\left\langle s_{1}\right\rangle \top \leftrightarrow\left\langle s_{2}\right\rangle \top \quad\left\langle r_{1}\right\rangle \top \leftrightarrow\left\langle r_{2}\right\rangle \top$
- $\left\langle s_{1} ; r_{1}\right\rangle \phi \rightarrow\left[s_{1} ; r_{1}\right] \phi \quad\left\langle s_{2} ; r_{2}\right\rangle \phi \rightarrow\left[s_{2} ; r_{2}\right] \phi$
- $\left[s_{1} ; r_{2}\right] \phi \rightarrow \phi$
- $\phi \rightarrow\left[s_{1} ; r_{2}\right]\left\langle s_{1} ; r_{2}\right\rangle \phi$
- $\left[s_{1} ; r_{2}\right] \phi \rightarrow\left[s_{1} ; r_{2}\right]\left[s_{1} ; r_{2}\right] \phi$
- $[\alpha ; \beta] \phi \leftrightarrow[\alpha][\beta] \phi$
- $[\alpha \cup \beta] \phi \leftrightarrow[\alpha] \phi \wedge[\beta] \phi$

$P D L_{0}^{\Delta}$

$P D L_{0}^{\Delta}$: syntax and semantics

Syntax

- $\alpha, \beta::=\boldsymbol{a} \mid \phi \quad$? $|(\alpha ; \beta)|(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi|(\phi \circ \psi)|(\phi \triangleright \psi) \mid(\phi \triangleleft \psi)$

Semantics

- a model is a structure of the form $\mathcal{M}=(W, R, *, V)$ where
- W is a nonempty set of states
- R is a function $a \mapsto R(a) \subseteq W \times W$
- * is a ternary relation over W
- V is a function $p \mapsto V(p) \subseteq W$

$P D L_{0}^{\Delta}$

$P D L_{0}^{\Delta}$: truth conditions

In a model $\mathcal{M}=(W, R, *, V)$ we define

- $(a)^{\mathcal{M}}=R(a)$
- $(\phi ?)^{\mathcal{M}}=\left\{(x, y): x=y\right.$ and $\left.y \in(\phi)^{\mathcal{M}}\right\}$
- $(\alpha ; \beta)^{\mathcal{M}}=\left\{(x, y)\right.$: there exists $z \in W$ such that $x(\alpha)^{\mathcal{M}} \boldsymbol{Z}$ and $\left.z(\beta)^{\mathcal{M}} y\right\}$
- $(\alpha \| \beta)^{\mathcal{M}}=\{(x, y)$: there exists $z, t \in W$ such that $y *(z, t), x(\alpha)^{\mathcal{M}} z$ and $\left.x(\beta)^{\mathcal{M}} t\right\}$

$P D L_{0}^{\Delta}$

$P D L_{0}^{\Delta}$: truth conditions

In a model $\mathcal{M}=(W, R, *, V)$ we define

- $(p)^{\mathcal{M}}=V(p)$
- $(\perp)^{\mathcal{M}}$ is empty
- $(\neg \phi)^{\mathcal{M}}=W \backslash(\phi)^{\mathcal{M}}$
- $(\phi \vee \psi)^{\mathcal{M}}=(\phi)^{\mathcal{M}} \cup(\psi)^{\mathcal{M}}$
- $([\alpha] \phi)^{\mathcal{M}}=\left\{x:\right.$ for all $y \in W$, if $\left.x(\alpha)^{\mathcal{M}} y, y \in(\alpha)^{\mathcal{M}}\right\}$
- $(\phi \circ \psi)^{\mathcal{M}}=\{x$: there exists $y, z \in W$ such that $x \in y \star z$, $y \in V_{\mathcal{M}}(\phi)$ and $\left.z \in V_{\mathcal{M}}(\psi)\right\}$
- $(\phi \triangleright \psi)^{\mathcal{M}}=\{x$: there exists $y, z \in W$ such that $z \in y \star x$, $y \in V_{\mathcal{M}}(\phi)$ and $\left.z \in V_{\mathcal{M}}(\psi)\right\}$
- $(\phi \triangleleft \psi)^{\mathcal{M}}=\{x$: there exists $y, z \in W$ such that $y \in x \star z$, $y \in V_{\mathcal{M}}(\phi)$ and $\left.z \in V_{\mathcal{M}}(\psi)\right\}$

$P D L_{0}^{\Delta}$

$P D L_{0}^{\Delta}$: classes of models

A model $\mathcal{M}=(W, R, *, V)$ is said to be separated iff

- if $x *(y, z)$ and $x *(t, u), y=t$ and $z=u$

A model $\mathcal{M}=(W, R, *, V)$ is said to be deterministic iff

- if $x *(z, t)$ and $y *(z, t), x=y$

A model $\mathcal{M}=(W, R, *, V)$ is said to be serial iff

- $*(x, y)$ is nonempty

$P D L_{0}^{\Delta}$

The elementary classes of frames defined by the first-order sentences in the hereunder table are modally definable by the associated formulas.

| $\exists y y \in x \star x$ | $\langle T ? \\| T ?\rangle T$ | |
|---|---|---|---|
| $(y \in x \star x \wedge z \in x \star x \rightarrow y=z)$ | $\langle T ? \\| T ?\rangle p \rightarrow[T ? \\| T ?] p$ |
| $(y \in x \star x \rightarrow x \in x \star y)$ | $p \rightarrow[T ? \\| T ?](p \triangleright p)$ |
| $(y \in x \star x \rightarrow x \in y \star x)$ | $p \rightarrow[T ? \\| T ?](p \triangleleft p)$ |
| $(z \in x \star y \leftrightarrow z \in y \star x)$ | $p \circ q \leftrightarrow q \circ p$ |
| $\exists y \exists z x \in y \star z$ | $T \circ T$ |
| $\exists y \exists z y \in z \star x$ | $T \triangleright T$ |
| $\exists y \exists z z \in x \star y$ | $T \triangleleft T$ |
| $(t \in(x \star y) \star z \leftrightarrow t \in x \star(y \star z))$ | $(p \circ q) \circ r \leftrightarrow p \circ(q \circ r)$ |
| $x \notin y \star z$ | $\perp \bar{o} \perp$ |

The class of all separated frames is modally definable by the fomula

- $p \circ q \rightarrow(p \bar{o} \perp) \wedge(\perp \bar{o} q)$

The class of all deterministic frames is not modally definable
$P D L_{0}^{\Delta}$: expressivity

For all test-free formulas ϕ

- the formulas $\langle T$? \| $|$? $\rangle \uparrow$ and ϕ are not equally interpreted in all separated deterministic models

For all fork-free formulas ϕ

- the formulas $\langle a \| a\rangle \top$ and ϕ are not equally interpreted in all separated deterministic models

The following expressions are equally interpreted in all separated models for each programs α, β, for each formulas ϕ and for each atomic formulas p not occurring in α, β, ϕ

- $\langle\alpha \| \beta\rangle \phi$
- $\forall p(\langle\alpha\rangle((\phi \wedge p) \triangleleft T) \vee\langle\beta\rangle(T \triangleright(\phi \wedge \neg p)))$

Axiomatization/completeness

$P D L_{0}^{\Delta}$: axiomatization

Axioms

- all tautologies
- $[\alpha](\phi \rightarrow \psi) \rightarrow([\alpha] \phi \rightarrow[\alpha] \psi)$
- $\langle\alpha ; \beta\rangle \phi \leftrightarrow\langle\alpha\rangle\langle\beta\rangle \phi$
- $\langle\alpha \| \beta\rangle \phi \rightarrow\langle\alpha\rangle((\phi \wedge \psi) \triangleleft \top) \vee\langle\beta\rangle(\top \triangleright(\phi \wedge \neg \psi))$
- $\langle\phi ?\rangle \psi \leftrightarrow \phi \wedge \psi$
- $(\phi \rightarrow \psi) \bar{o} \chi \rightarrow(\phi \bar{\sigma} \chi \rightarrow \psi \bar{o} \chi)$
- $\phi \bar{\circ}(\psi \rightarrow \chi) \rightarrow(\phi \bar{\circ} \psi \rightarrow \phi \overline{0} \chi)$
- $(\phi \rightarrow \psi) \bar{\triangleright} \chi \rightarrow(\phi \bar{\triangleright} \chi \rightarrow \psi \bar{\triangleright} \chi)$
- $\phi \bar{\triangleright}(\psi \rightarrow \chi) \rightarrow(\phi \bar{\triangleright} \psi \rightarrow \phi \bar{\triangleright} \chi)$
- $(\phi \rightarrow \psi) \bar{\triangleleft} \chi \rightarrow(\phi \bar{\triangleleft} \chi \rightarrow \psi \bar{\triangleleft} \chi)$
- $\phi \bar{\triangleleft}(\psi \rightarrow \chi) \rightarrow(\phi \bar{\triangleleft} \psi \rightarrow \phi \bar{\triangleleft} \chi)$

Axiomatization/completeness

$P D L_{0}^{\Delta}$: axiomatization

Axioms

- $\phi \circ \neg(\phi \triangleright \neg \psi) \rightarrow \psi$
- $\phi \triangleright \neg(\phi \circ \neg \psi) \rightarrow \psi$
- $\neg(\neg \phi \triangleleft \psi) \circ \psi \rightarrow \phi$
- $\neg(\neg \phi \circ \psi) \triangleleft \psi \rightarrow \phi$
- $[(\alpha ; \phi$? $) \|(\beta ; \psi ?)](\phi \circ \psi)$
- $\langle\alpha(\phi ?)\rangle \psi \rightarrow\langle\alpha((\phi \wedge \chi) ?)\rangle \psi \vee\langle\alpha((\phi \wedge \neg \chi) ?)\rangle \psi$
- $\langle f(\alpha)\rangle \phi \leftrightarrow\langle\alpha\rangle \phi$
- $p \circ q \rightarrow(p \bar{\circ} \perp) \wedge(\perp \bar{o} q)$

Axiomatization/completeness

$P D L_{0}^{\Delta}$: axiomatization

Inference rules

- modus ponens : from ϕ and $\phi \rightarrow \psi$, infer ψ
- necessitation : from ϕ, infer $[\alpha] \phi, \phi \bar{o} \psi$ and $\psi \bar{o} \phi$
- fork : from $\{[\gamma](\langle\alpha\rangle((\phi \wedge p) \triangleleft T) \vee\langle\beta\rangle(T \triangleright(\phi \wedge \neg p)))$: p is a propositional variable\}, infer $[\gamma](\langle\alpha \| \beta\rangle \phi)$

Axiomatization/completeness

$P D L_{0}^{\Delta}$: completeness
...

Open problems

Truth conditions of Benevides et al. (2011)

- Decidability/complexity of satisfiability for the restriction considered by Benevides et al. (2011)
- Decidability/complexity of satisfiability for the full language
- Tableau calculus for the restriction considered by Benevides et al. (2011)
- Tableau calculus for the full language
- Axiomatization of validity for the full language

Truth conditions of Frias (2002)

- Same issues

Bibliography

Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.
Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific (2002).
Frias, M., Baum, G., Hæberer, A.: Fork algebras in algebra, logic and computer science. Fundamenta Informaticæ32 (1997) 1-25.

Frias, M., Veloso, P., Baum, G.: Fork algebras: past, present and future. Journal of Relational Methods in Computer Science 1 (2004) 181-216.

