Axiomatization/completeness of
propositional dynamic logic with
separation and parallel composition
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Introduction and motivations

Binary relations

Algebra of subrelations of an equivalence relation E on some
set A

» set of subrelations of E that is closed for the following
operations
» 0, empty binary relation
—R, complement of a binary relation R wrt E
R U S, union of binary relations R and S
Id, identity binary relation on A
R, transposition of a binary relation R
R o S, composition of binary relations R and S

vV vy VY VvYy



Introduction and motivations

Binary relations

Tarski (1954)

» the class of all algebra of binary relations is axiomatizable
by a set of equations
» is the class of all algebra of binary relations axiomatizable
by a finite set of equations ?
Monk (1964)

» NO

Bibliography
Monk, J.: On representable relation algebras. Michigan
Mathematical Journal 11 (1964) 207-210.



Introduction and motivations
Fork

In order to overcome this drawback
» an extra binary operation on relations called fork is added

Addition of fork has the following consequence

» the class of algebras obtained can be axiomatized by a
finite set of equations



Introduction and motivations
Fork

Algebra of subrelations of an equivalence relation E on some
set A closed under a binary function x

» Ry S, fork of binary relations R and S

The definition of the operation fork is given by
» RyS = {(u,v+w): uRvand uSw}

Bibliography

Frias, M., Baum, G., Haeberer, A., Veloso, P.: Fork algebras
are representable. Bulletin of the Section of Logic 24 (1995)
64-75.

Frias, M., Haeberer, A., Veloso, P.: A finite axiomatization for
fork algebras. Logic Journal of the IGPL 5 (1997) 311-319.



Algebras of binary relations and relation algebras

History and definitions

(R,0,—,U,Id,~" o) is an algebra of binary relations if there
exists an equivalence relation E on some set A such that

» R is a set of subrelations of E that is closed under 0, —, U,
Id, =1, o



Algebras of binary relations and relation algebras

History and definitions

(R,0,—,U,Id,~" o) is a relation algebra if
» (R,0,—,U) is a Boolean algebra

x 1!

> (xUy) " =xuy

> (Xoy)_1 = y_1 ox !

> (xUy)oz=(xo02)U(yo2)

> (xoy)oz=xo(yo2)

=X

> xold=Idox=x
» (xoy)Nz=0iff (zoy ") Nx=0iff (x Toz)Ny=0



Algebras of binary relations and relation algebras

History and definitions

Tarski (1941)
» every algebra of binary relations is a relation algebra

> is every relation algebra isomorphic to an algebra of binary
relations ?

Lyndon (1950)
» NO

Bibliography
Lyndon, R.: The representation of relational algebras. Annals
of Mathematics 51 (1950) 707-729.



Proper and abstract fork algebras

On the origin of fork algebras

Let £ be
» —Id
Consider the formula
» YuVvvwda(a#una#vAa#w)

Suppose

» R is a set of subrelations of an equivalence relation E on A
that is closed under 0, —, U, Id, ~', o

» x: Ax A— Aisinjective and surjective

» R is closed under 7 where RS = {(u, v+ w) : uRv and
uSw}



Proper and abstract fork algebras

On the origin of fork algebras

The following are equivalent
» YuVYvVw3da(@a # uANa#vAa#w)
> VuVvvVw3a(a # u AN a(#v #) vw)
» VuvvyYw3a(u#'anA a
> YuvYw (u (£ o (# v #
> YUYW (u (£ o (£ v #
> YuVvYw (u (£ o (# v #
> (Fo(Fu ) =(1v1)



Proper and abstract fork algebras

On the origin of fork algebras

Development of the classes of proper and abstract fork
algebras
» Haeberer and Veloso (1991), Veloso et al. (1992): ux v =
the tree with subtrees u and v

» Veloso and Haeberer (1991): u « v = concatenation of the
finite strings v and v



Proper and abstract fork algebras

Definition of the classes

(R,A,0,—,U,1d,~", o,57,%)is a proper fork algebra if
» R is a set of subrelations of an equivalence relation E on A
that is closed under 0, —, U, Id, =", o
» x: Ax A— Aisinjective

» R is closed under 7 where RS = {(u, v+ w) : uRv and
uSw}



Proper and abstract fork algebras

Definition of the classes

(R,0,—,U,1d,~" 0,v/) is an abstract fork algebra if
» (R,0,—,U,Id,~" o) is a relation algebra
> xvy = (xo(ldy1))n(yo(1vid))
> (xyy)o(zyt) ' =(xoz)n(yot )
> (ldy1) 'y(1vid)~' < Id

Cross is defined by the equation
> x®y = ((ldy1) o x)y((1ld)~Toy)



Proper and abstract fork algebras

Definition of the classes

Theorem
» every proper fork algebra is an abstract fork algebra

» every abstract fork algebra is isomorphic to a proper fork
algebra

Bibliography

Frias, M., Baum, G., Haeberer, A., Veloso, P.: Fork algebras
are representable. Bulletin of the Section of Logic 24 (1995)
64-75.

Frias, M., Haeberer, A., Veloso, P.: A finite axiomatization for
fork algebras. Logic Journal of the IGPL 5 (1997) 311-319.



Separation and parallel composition
PRSPDL : syntax

Syntax
>a,Bu=ale?t]s|s2|n|r](wf)]|(auf)|a|(a]p)
> g pu=p|L]=g|(oV)][a]e

Bibliography

Benevides, M., de Freitas, R., Viana, P.: Propositional
dynamic logic with storing, recovering and parallel composition.
Electronic Notes in Theoretical Computer Science 269 (2011)
95-107.



Separation and parallel composition
PRSPDL : semantics

Models
» a model is a structure of the form M = (W, R, x, V) where
» W is a nonempty set of states
» Risafunctiona— R(a) C W x W
» xis a ternary relation over W
» Vs afunctionp— V(p) C W

Truth conditions
» in a model M = (W, R, *, V) we define
> (M = V(p)
» (L)M is empty
> (mp)M = W (o)™
> (¢V1/)) = ()M U (P)M
» ([a]p)M = {x: forally € W, if x(a)My, y € ()M}



Separation and parallel composition
PRSPDL : semantics

Truth conditions according to Benevides et al. (2011)
» inamodel M = (W, R, x, V) we define

> (a)™ = R(a)

s (87)M = {(x.y): x = y and y € ()M}

» (s1)M = {(x, y): there exists z € W such that y = (x,2)}

» (s2)M = {(x, y): there exists z € W such that y = (z, x)}

» ()M = {(x,y): there exists z € W such that x = (y, z)}

» ()M = {(x,y): there exists z € W such that x = (z, y)}

» (a; BYM = {(x, y): there exists z € W such that x(a)z
and z(8)My}

> (aU B = ()M U (BM

» ()M = {(x,y): there exists n € N and there exists
2,...,2Zn € Wsuch that x = zo(a)M ... ()M 2z, = y}

» (a| BM = {(x,y): there exists z, t,u, v € W such that
x*(z,1), y *(u,v), z(ae)Mu and t(3)Mv}



Separation and parallel composition
PRSPDL : semantics

Truth conditions according to Frias (2002)
» inamodel M = (W, R, x, V) we define

> (a)™ = R(a)

s (87)M = {(x.y): x = y and y € ()M}

» (s1)M = {(x, y): there exists z € W such that y = (x,2)}

» (s2)M = {(x, y): there exists z € W such that y = (z, x)}

» ()M = {(x,y): there exists z € W such that x = (y, z)}

» ()M = {(x,y): there exists z € W such that x = (z, y)}

» (a; BYM = {(x, y): there exists z € W such that x(a)z
and z(8)My}

> (aU B = ()M U (BM

» ()M = {(x,y): there exists n € N and there exists
2,...,2Zn € Wsuch that x = zo(a)M ... ()M 2z, = y}

» (a || B)M = {(x,y): there exists z, t € W such that
y*(z,t), x(a)MZz and x(3)t}



Separation and parallel composition
PRSPDL : classes of models

A model M = (W, R, x, V) is said to be separated iff
» if xx(y,z)and xx (t,u), y=tand z=u

A model M = (W, R, x, V) is said to be deterministic iff
> if xx(z,t)and y x(z,t),x =y

A model M = (W, R, x, V) is said to be serial iff
> x(x, y) is nonempty

In a separated model M = (W, R, x, V) we have
> if x(sy)Mzand z(r))My, x =y
> if x(s2)Mz and z(rR)My, x =y

In a deterministic separated model M = (W, R, %, V) we have
> if x(r1)Mz, z(s1)My, x(r)Mt and t(sp)My, x =y



Separation and parallel composition
PRSPDL : expressivity

Syntax
> a,Br=ale?si|se|n|rl(wB)|(euf)]a|(a]B)
> g, u=pl L= |(6VY)|[a]d

For all i € {1,2} and for all s;-free programs «

» the programs s; and « are not equally interpreted in all
separated models

For all i € {1,2} and for all r;-free programs «

» the programs r; and « are not equally interpreted in all
separated models



Separation and parallel composition
PRSPDL : expressivity

Syntax
> o, Bu=ald?|si]s|n|rn|(ap)]|(auf)]ar|(alp)
> g u=pl L= |(dVY)]|[a]d

For all atomic programs a, b and for all ||-free programs «

» the programs a || b and « are not equally interpreted in all
separated models



Separation and parallel composition
PRSPDL : expressivity

Syntax
>a,Bu=ale?t]s|s2|r|r](xf)]|(cUf)|a|(a]p)
> o p=p|L]=g|(oV)][a]e

The following expressions are equally interpreted in all
separated models for each programs «, 3, for each formulas ¢
and for each atomic formulas p not occurring in o, 3, ¢

> (a || B)¢
> Vo ((r){a)(s1)(d A p) V (r2)(B)(S2)(¢ A —P))



Separation and parallel composition
PRSPDL : a simple fragment

Restriction of the syntax
»a,Br=alsi|[s2|n|r|(af)|(aup)
> g pu=p|L]=g|(oV)][a]e

Bibliography

Benevides, M., de Freitas, R., Viana, P.: Propositional
dynamic logic with storing, recovering and parallel composition.
Electronic Notes in Theoretical Computer Science 269 (2011)
95-107.



Separation and parallel composition
PRSPDL : a simple fragment

Axiomatization
» all tautologies  modus ponens  necessitation
> [2](¢ — ¥) = ([elg — [o]¢)
> (rn)o —[nle ()¢ —[r]o
> ¢ = [s1[{n)¢ ¢ — [s2l{r)g ¢ — [n](s1)¢ ¢ — [r](S2)d
> (S1)T «—(s)T ()T « ()T
> (S1;r)¢ — [s1,1]e  (S2i )¢ — [S2; )¢
> [s1; e — ¢
> ¢ — [s1; R](S1; )¢
> [s1;1r2]¢ — [s1; r2][s1; 12 b
> [o; Blo < [a][B]e
> [aUBlo < [a]o A[Blo



PDLA

PDL§ : syntax and semantics

Syntax
> a,fr=al¢?|(a;p) | (all B)
> ¢, =p| L[=g[(oVY)|[e]d | (o) [ (o>e)]|(¢<¥)

Semantics
» a model is a structure of the form M = (W, R, *, V) where
» W is a nonempty set of states
» Risafunctiona— R(a) C W x W
» xis a ternary relation over W
» Vs afunctionp— V(p) C W



PDLA

PDLE : truth conditions

In a model M = (W, R, *, V) we define
> (@)™ = R(a)
> (p)M ={(x,y): x=yandy € ()M}
> (o; )M = {(x, y): there exists z € W such that x(a)™z

and z(8)"y}
> (a || BM = {(x,y): there exists z, t € W such that
y *(z,1), x(a)Mz and x(B)Mt}



PDLA

PDLE : truth conditions

In a model M = (W, R, x, V) we define
> (p)M = V(p)

1)M is empty

—p)M = W\ ()M

6V PIM = (HMU ()M

[]p)M = {x: forall y € W, if x(a)My, y € ()M}

(¢ 0 )M = {x: there exists y,z € W such that x € y x z,

y € Vam(¢) and z € Vi(¥)}

> (¢ )M = {x: there exists y,z € W such that z € y x x,
Y € V(o) and z € V(4)}

> (¢ <)M = {x: there exists y,z € W such that y € x x z,
y € Vm(¢) and z € Vi (4)}



PDLA

PDLE : classes of models

A model M = (W, R, x, V) is said to be separated iff
» if xx(y,z)and x x (t,u), y=tandz=u

A model M = (W, R, x, V) is said to be deterministic iff
> if xx(z,t)and y x(z,t), x =y

A model M = (W, R, x, V) is said to be serial iff
» (X, y) is nonempty



PDLA

PDLE : modal definability

The elementary classes of frames defined by the first-order
sentences in the hereunder table are modally definable by the

associated formulas.

dyyexxx

(T?2 | THT

(VEXXXNZEXKX =Y =2)

(M7 THp—=[T7]| T7p

(YyeExxx—XxEXKY)

p—I[T7] T?(p>p)

(YEX* X = XEY*X

p—[T?| T?(p<p)

)
(zexxy—zeyxx)

pocgqg—qop
dydzxeyxz ToT
dydzyezxx T T
dydzzexxy TaT
(te(xxy)xz—texx(yxz))| (poqQ)or<— po(qor)
XEdy*xz lal




PDLA

PDLE : modal definability

The class of all separated frames is modally definable by the
fomula

> poq— (p5Ll) A(L3q)

The class of all deterministic frames is not modally definable



PDLA

PDLE : expressivity

For all test-free formulas ¢

» the formulas (T7? || T?)T and ¢ are not equally interpreted
in all separated deterministic models

For all fork-free formulas ¢

» the formulas (a || a) T and ¢ are not equally interpreted in
all separated deterministic models



PDLA

PDLE : expressivity

The following expressions are equally interpreted in all
separated models for each programs «, 3, for each formulas ¢
and for each atomic formulas p not occurring in «, 3, ¢

> (o B)
> Vp () (9 AP)T) V(BT > (¢ A —p)))



Axiomatization/completeness

PDL§ : axiomatization

Axioms
» all tautologies
> [a](¢ — ¥) — ([a]¢ — [o]v)
> (; B)¢ < (a)(B)¢
(a || B)p — () ((pAp)aT)V (BUT > (A —¢))
(@MY = dNY
(¢ — ¥)ax — (¢ox — ¥dx)
$5(¢) — x) — (¢5¢ — ¢dx)
(¢ — ¥)Bx — (¢Bx — YBX)
oS¢ — x) — (59 — dbx)
(¢ — ¥)ax — (¢x — ¥x)
(¢ — ¢x)

vV V.V VvV VvV vV VY

(Y — x) —



Axiomatization/completeness

PDL§ : axiomatization

Axioms
> ¢go—(p>—1p) =
> o> —(pop) =
> ~(mpa)oyp — ¢
> ~(mpo)ay — ¢
> [(e;¢?) || (B;9D)](do¥)
> (a(¢?)y — (a((¢ A X)))P V (al(é A =x)?)Y
> (f(a))¢ < ()¢
» poq— (p5Ll)A(L3q)



Axiomatization/completeness

PDL§ : axiomatization

Inference rules
» modus ponens : from ¢ and ¢ — 1, infer
» necessitation : from ¢, infer [a]®, ¢3¢ and ¢3¢

> fork: from {[Y]({(«)((¢ A P) < T) V (B)(T > (¢ A —p))) = pis
a propositional variable}, infer [y]((« || 8)®)



Axiomatization/completeness
PDLE : completeness



Open problems

Truth conditions of Benevides et al. (2011)

» Decidability/complexity of satisfiability for the restriction
considered by Benevides et al. (2011)

» Decidability/complexity of satisfiability for the full language

» Tableau calculus for the restriction considered by
Benevides ef al. (2011)

» Tableau calculus for the full language
» Axiomatization of validity for the full language

Truth conditions of Frias (2002)
» Same issues
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