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Introduction and motivations
Binary relations

Algebra of subrelations of an equivalence relation E on some
set A

I set of subrelations of E that is closed for the following
operations

I 0, empty binary relation
I −R, complement of a binary relation R wrt E
I R ∪ S, union of binary relations R and S
I Id , identity binary relation on A
I R−1, transposition of a binary relation R
I R ◦ S, composition of binary relations R and S



Introduction and motivations
Binary relations

Tarski (1954)
I the class of all algebra of binary relations is axiomatizable

by a set of equations
I is the class of all algebra of binary relations axiomatizable

by a finite set of equations ?
Monk (1964)

I NO

Bibliography
Monk, J.: On representable relation algebras. Michigan
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Introduction and motivations
Fork

In order to overcome this drawback
I an extra binary operation on relations called fork is added

Addition of fork has the following consequence
I the class of algebras obtained can be axiomatized by a

finite set of equations



Introduction and motivations
Fork

Algebra of subrelations of an equivalence relation E on some
set A closed under a binary function ∗

I R5S, fork of binary relations R and S

The definition of the operation fork is given by
I R5S = {(u, v ∗ w) : uRv and uSw}

Bibliography
Frias, M., Baum, G., Hæberer, A., Veloso, P.: Fork algebras
are representable. Bulletin of the Section of Logic 24 (1995)
64–75.
Frias, M., Hæberer, A., Veloso, P.: A finite axiomatization for
fork algebras. Logic Journal of the IGPL 5 (1997) 311–319.



Algebras of binary relations and relation algebras
History and definitions

(R,0,−,∪, Id ,−1 , ◦) is an algebra of binary relations if there
exists an equivalence relation E on some set A such that

I R is a set of subrelations of E that is closed under 0, −, ∪,
Id , −1, ◦



Algebras of binary relations and relation algebras
History and definitions

(R,0,−,∪, Id ,−1 , ◦) is a relation algebra if
I (R,0,−,∪) is a Boolean algebra

I x−1−1
= x

I (x ∪ y)−1 = x−1 ∪ y−1

I (x ◦ y)−1 = y−1 ◦ x−1

I (x ∪ y) ◦ z = (x ◦ z) ∪ (y ◦ z)

I (x ◦ y) ◦ z = x ◦ (y ◦ z)

I x ◦ Id = Id ◦ x = x
I (x ◦ y) ∩ z = 0 iff (z ◦ y−1) ∩ x = 0 iff (x−1 ◦ z) ∩ y = 0



Algebras of binary relations and relation algebras
History and definitions

Tarski (1941)
I every algebra of binary relations is a relation algebra
I is every relation algebra isomorphic to an algebra of binary

relations ?
Lyndon (1950)

I NO

Bibliography
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Proper and abstract fork algebras
On the origin of fork algebras

Let 6= be
I −Id

Consider the formula
I ∀u ∀v ∀w ∃a (a 6= u ∧ a 6= v ∧ a 6= w)

Suppose
I R is a set of subrelations of an equivalence relation E on A

that is closed under 0, −, ∪, Id , −1, ◦
I ∗ : A× A→ A is injective and surjective
I R is closed under 5 where R5S = {(u, v ∗ w) : uRv and

uSw}



Proper and abstract fork algebras
On the origin of fork algebras

The following are equivalent
I ∀u ∀v ∀w ∃a (a 6= u ∧ a 6= v ∧ a 6= w)

I ∀u ∀v ∀w ∃a (a 6= u ∧ a (6= 5 6=) v ∗ w)

I ∀u ∀v ∀w ∃a (u 6=−1 a ∧ a (6= 5 6=) v ∗ w)

I ∀u ∀v ∀w (u ( 6=−1 ◦ (6= 5 6=)) v ∗ w)

I ∀u ∀v ∀w (u ( 6=−1 ◦ (6= 5 6=)) v ∗ w ↔ u 1 v ∧ u 1 w)

I ∀u ∀v ∀w (u ( 6=−1 ◦ (6= 5 6=)) v ∗ w ↔ u (151) v ∗ w)

I (6=−1 ◦ (6= 5 6=)) = (151)



Proper and abstract fork algebras
On the origin of fork algebras

Development of the classes of proper and abstract fork
algebras

I Hæberer and Veloso (1991), Veloso et al. (1992): u ∗ v =
the tree with subtrees u and v

I Veloso and Hæberer (1991): u ∗ v = concatenation of the
finite strings u and v



Proper and abstract fork algebras
Definition of the classes

(R,A,0,−,∪, Id ,−1 , ◦,5, ∗) is a proper fork algebra if
I R is a set of subrelations of an equivalence relation E on A

that is closed under 0, −, ∪, Id , −1, ◦
I ∗ : A× A→ A is injective
I R is closed under 5 where R5S = {(u, v ∗ w) : uRv and

uSw}



Proper and abstract fork algebras
Definition of the classes

(R,0,−,∪, Id ,−1 , ◦,5) is an abstract fork algebra if
I (R,0,−,∪, Id ,−1 , ◦) is a relation algebra
I x5y = (x ◦ (Id51)) ∩ (y ◦ (15Id))

I (x5y) ◦ (z5t)−1 = (x ◦ z−1) ∩ (y ◦ t−1)

I (Id51)−15(15Id)−1 ≤ Id

Cross is defined by the equation
I x ⊗ y ::= ((Id51)−1 ◦ x)5((15Id)−1 ◦ y)



Proper and abstract fork algebras
Definition of the classes

Theorem
I every proper fork algebra is an abstract fork algebra
I every abstract fork algebra is isomorphic to a proper fork

algebra
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Separation and parallel composition
PRSPDL : syntax

Syntax
I α, β ::= a | φ? | s1 | s2 | r1 | r2 | (α;β) | (α ∪ β) | α? | (α ‖ β)

I φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ

Bibliography
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dynamic logic with storing, recovering and parallel composition.
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Separation and parallel composition
PRSPDL : semantics

Models
I a model is a structure of the formM = (W ,R, ∗,V ) where

I W is a nonempty set of states
I R is a function a 7→ R(a) ⊆W ×W
I ∗ is a ternary relation over W
I V is a function p 7→ V (p) ⊆W

Truth conditions
I in a modelM = (W ,R, ∗,V ) we define

I (p)M = V (p)
I (⊥)M is empty
I (¬φ)M = W \ (φ)M

I (φ ∨ ψ)M = (φ)M ∪ (ψ)M

I ([α]φ)M = {x : for all y ∈W , if x(α)My , y ∈ (α)M}



Separation and parallel composition
PRSPDL : semantics

Truth conditions according to Benevides et al. (2011)
I in a modelM = (W ,R, ∗,V ) we define

I (a)M = R(a)
I (φ?)M = {(x , y): x = y and y ∈ (φ)M}
I (s1)M = {(x , y): there exists z ∈W such that y ∗ (x , z)}
I (s2)M = {(x , y): there exists z ∈W such that y ∗ (z, x)}
I (r1)M = {(x , y): there exists z ∈W such that x ∗ (y , z)}
I (r2)M = {(x , y): there exists z ∈W such that x ∗ (z, y)}
I (α;β)M = {(x , y): there exists z ∈W such that x(α)Mz

and z(β)My}
I (α ∪ β)M = (α)M ∪ (β)M

I (α?)M = {(x , y): there exists n ∈ IN and there exists
z0, . . . , zn ∈W such that x = z0(α)M . . . (α)Mzn = y}

I (α ‖ β)M = {(x , y): there exists z, t ,u, v ∈W such that
x ∗ (z, t), y ∗ (u, v), z(α)Mu and t(β)Mv}



Separation and parallel composition
PRSPDL : semantics

Truth conditions according to Frias (2002)
I in a modelM = (W ,R, ∗,V ) we define

I (a)M = R(a)
I (φ?)M = {(x , y): x = y and y ∈ (φ)M}
I (s1)M = {(x , y): there exists z ∈W such that y ∗ (x , z)}
I (s2)M = {(x , y): there exists z ∈W such that y ∗ (z, x)}
I (r1)M = {(x , y): there exists z ∈W such that x ∗ (y , z)}
I (r2)M = {(x , y): there exists z ∈W such that x ∗ (z, y)}
I (α;β)M = {(x , y): there exists z ∈W such that x(α)Mz

and z(β)My}
I (α ∪ β)M = (α)M ∪ (β)M

I (α?)M = {(x , y): there exists n ∈ IN and there exists
z0, . . . , zn ∈W such that x = z0(α)M . . . (α)Mzn = y}

I (α ‖ β)M = {(x , y): there exists z, t ∈W such that
y ∗ (z, t), x(α)Mz and x(β)Mt}



Separation and parallel composition
PRSPDL : classes of models

A modelM = (W ,R, ∗,V ) is said to be separated iff
I if x ∗ (y , z) and x ∗ (t ,u), y = t and z = u

A modelM = (W ,R, ∗,V ) is said to be deterministic iff
I if x ∗ (z, t) and y ∗ (z, t), x = y

A modelM = (W ,R, ∗,V ) is said to be serial iff
I ∗(x , y) is nonempty

In a separated modelM = (W ,R, ∗,V ) we have
I if x(s1)Mz and z(r1)My , x = y
I if x(s2)Mz and z(r2)My , x = y

In a deterministic separated modelM = (W ,R, ∗,V ) we have
I if x(r1)Mz, z(s1)My , x(r2)Mt and t(s2)My , x = y



Separation and parallel composition
PRSPDL : expressivity

Syntax
I α, β ::= a | φ? | s1 | s2 | r1 | r2 | (α;β) | (α ∪ β) | α? | (α ‖ β)

I φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ

For all i ∈ {1,2} and for all si -free programs α
I the programs si and α are not equally interpreted in all

separated models

For all i ∈ {1,2} and for all ri -free programs α
I the programs ri and α are not equally interpreted in all

separated models



Separation and parallel composition
PRSPDL : expressivity

Syntax
I α, β ::= a | φ? | s1 | s2 | r1 | r2 | (α;β) | (α ∪ β) | α? | (α ‖ β)

I φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ

For all atomic programs a,b and for all ‖-free programs α
I the programs a ‖ b and α are not equally interpreted in all

separated models



Separation and parallel composition
PRSPDL : expressivity

Syntax
I α, β ::= a | φ? | s1 | s2 | r1 | r2 | (α;β) | (α ∪ β) | α? | (α ‖ β)

I φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ

The following expressions are equally interpreted in all
separated models for each programs α, β, for each formulas φ
and for each atomic formulas p not occurring in α, β, φ

I 〈α ‖ β〉φ
I ∀p (〈r1〉〈α〉〈s1〉(φ ∧ p) ∨ 〈r2〉〈β〉〈s2〉(φ ∧ ¬p))



Separation and parallel composition
PRSPDL : a simple fragment

Restriction of the syntax
I α, β ::= a | s1 | s2 | r1 | r2 | (α;β) | (α ∪ β)

I φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ
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Separation and parallel composition
PRSPDL : a simple fragment

Axiomatization
I all tautologies modus ponens necessitation
I [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I 〈r1〉φ→ [r1]φ 〈r2〉φ→ [r2]φ

I φ→ [s1]〈r1〉φ φ→ [s2]〈r2〉φ φ→ [r1]〈s1〉φ φ→ [r2]〈s2〉φ
I 〈s1〉> ↔ 〈s2〉> 〈r1〉> ↔ 〈r2〉>
I 〈s1; r1〉φ→ [s1; r1]φ 〈s2; r2〉φ→ [s2; r2]φ

I [s1; r2]φ→ φ

I φ→ [s1; r2]〈s1; r2〉φ
I [s1; r2]φ→ [s1; r2][s1; r2]φ

I [α;β]φ↔ [α][β]φ

I [α ∪ β]φ↔ [α]φ ∧ [β]φ



PDL∆
0

PDL∆
0 : syntax and semantics

Syntax
I α, β ::= a | φ? | (α;β) | (α ‖ β)

I φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ | (φ ◦ ψ) | (φ . ψ) | (φ / ψ)

Semantics
I a model is a structure of the formM = (W ,R, ∗,V ) where

I W is a nonempty set of states
I R is a function a 7→ R(a) ⊆W ×W
I ∗ is a ternary relation over W
I V is a function p 7→ V (p) ⊆W



PDL∆
0

PDL∆
0 : truth conditions

In a modelM = (W ,R, ∗,V ) we define
I (a)M = R(a)

I (φ?)M = {(x , y): x = y and y ∈ (φ)M}
I (α;β)M = {(x , y): there exists z ∈W such that x(α)Mz

and z(β)My}
I (α ‖ β)M = {(x , y): there exists z, t ∈W such that

y ∗ (z, t), x(α)Mz and x(β)Mt}



PDL∆
0

PDL∆
0 : truth conditions

In a modelM = (W ,R, ∗,V ) we define
I (p)M = V (p)

I (⊥)M is empty
I (¬φ)M = W \ (φ)M

I (φ ∨ ψ)M = (φ)M ∪ (ψ)M

I ([α]φ)M = {x : for all y ∈W , if x(α)My , y ∈ (α)M}
I (φ ◦ ψ)M = {x : there exists y , z ∈W such that x ∈ y ? z,

y ∈ VM(φ) and z ∈ VM(ψ)}
I (φ . ψ)M = {x : there exists y , z ∈W such that z ∈ y ? x ,

y ∈ VM(φ) and z ∈ VM(ψ)}
I (φ / ψ)M = {x : there exists y , z ∈W such that y ∈ x ? z,

y ∈ VM(φ) and z ∈ VM(ψ)}



PDL∆
0

PDL∆
0 : classes of models

A modelM = (W ,R, ∗,V ) is said to be separated iff
I if x ∗ (y , z) and x ∗ (t ,u), y = t and z = u

A modelM = (W ,R, ∗,V ) is said to be deterministic iff
I if x ∗ (z, t) and y ∗ (z, t), x = y

A modelM = (W ,R, ∗,V ) is said to be serial iff
I ∗(x , y) is nonempty



PDL∆
0

PDL∆
0 : modal definability

The elementary classes of frames defined by the first-order
sentences in the hereunder table are modally definable by the
associated formulas.

∃y y ∈ x ? x 〈>? ‖ >?〉>
(y ∈ x ? x ∧ z ∈ x ? x → y = z) 〈>? ‖ >?〉p → [>? ‖ >?]p

(y ∈ x ? x → x ∈ x ? y) p → [>? ‖ >?](p . p)

(y ∈ x ? x → x ∈ y ? x) p → [>? ‖ >?](p / p)

(z ∈ x ? y ↔ z ∈ y ? x) p ◦ q ↔ q ◦ p
∃y ∃z x ∈ y ? z > ◦ >
∃y ∃z y ∈ z ? x > .>
∃y ∃z z ∈ x ? y > />

(t ∈ (x ? y) ? z ↔ t ∈ x ? (y ? z)) (p ◦ q) ◦ r ↔ p ◦ (q ◦ r)

x 6∈ y ? z ⊥◦̄⊥



PDL∆
0

PDL∆
0 : modal definability

The class of all separated frames is modally definable by the
fomula

I p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q)

The class of all deterministic frames is not modally definable



PDL∆
0

PDL∆
0 : expressivity

For all test-free formulas φ
I the formulas 〈>? ‖ >?〉> and φ are not equally interpreted

in all separated deterministic models

For all fork-free formulas φ
I the formulas 〈a ‖ a〉> and φ are not equally interpreted in

all separated deterministic models



PDL∆
0

PDL∆
0 : expressivity

The following expressions are equally interpreted in all
separated models for each programs α, β, for each formulas φ
and for each atomic formulas p not occurring in α, β, φ

I 〈α ‖ β〉φ
I ∀p (〈α〉((φ ∧ p) />) ∨ 〈β〉(> . (φ ∧ ¬p)))



Axiomatization/completeness
PDL∆

0 : axiomatization

Axioms
I all tautologies
I [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I 〈α;β〉φ↔ 〈α〉〈β〉φ
I 〈α ‖ β〉φ→ 〈α〉((φ ∧ ψ) />) ∨ 〈β〉(> . (φ ∧ ¬ψ))

I 〈φ?〉ψ ↔ φ ∧ ψ
I (φ→ ψ)◦̄χ→ (φ◦̄χ→ ψ◦̄χ)

I φ◦̄(ψ → χ)→ (φ◦̄ψ → φ◦̄χ)

I (φ→ ψ).̄χ→ (φ.̄χ→ ψ.̄χ)

I φ.̄(ψ → χ)→ (φ.̄ψ → φ.̄χ)

I (φ→ ψ)/̄χ→ (φ/̄χ→ ψ/̄χ)

I φ/̄(ψ → χ)→ (φ/̄ψ → φ/̄χ)



Axiomatization/completeness
PDL∆

0 : axiomatization

Axioms
I φ ◦ ¬(φ . ¬ψ)→ ψ

I φ . ¬(φ ◦ ¬ψ)→ ψ

I ¬(¬φ / ψ) ◦ ψ → φ

I ¬(¬φ ◦ ψ) / ψ → φ

I [(α;φ?) ‖ (β;ψ?)](φ ◦ ψ)

I 〈α(φ?)〉ψ → 〈α((φ ∧ χ)?)〉ψ ∨ 〈α((φ ∧ ¬χ)?)〉ψ
I 〈f (α)〉φ↔ 〈α〉φ
I p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q)



Axiomatization/completeness
PDL∆

0 : axiomatization

Inference rules
I modus ponens : from φ and φ→ ψ, infer ψ
I necessitation : from φ, infer [α]φ, φ◦̄ψ and ψ◦̄φ
I fork : from {[γ](〈α〉((φ ∧ p) />) ∨ 〈β〉(> . (φ ∧ ¬p))) : p is

a propositional variable}, infer [γ](〈α ‖ β〉φ)



Axiomatization/completeness
PDL∆

0 : completeness

. . .



Open problems

Truth conditions of Benevides et al. (2011)
I Decidability/complexity of satisfiability for the restriction

considered by Benevides et al. (2011)
I Decidability/complexity of satisfiability for the full language
I Tableau calculus for the restriction considered by

Benevides et al. (2011)
I Tableau calculus for the full language
I Axiomatization of validity for the full language

Truth conditions of Frias (2002)
I Same issues
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