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Motivation

Avant-Propos

The slides are in a very preliminary state.
For the accompanying paper and (eventually also) the formal Isabelle
development, visit:
http://www.irit.fr/~Martin.Strecker/Publications/dl_
transfo2013.html
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Motivation

Example: Load balancing (1)

n : N

a1 : A

a2 : A

a3 : A

b1 : B

b2 : B

n : N

a1 : A

a2 : A

a3 : A

b1 : B

b2 : B

Setup: Routers of categories A and B, communication node n : N
Initially: Node n connected to too many nodes of type A
Purpose: Swap some of these connections to nodes of type B
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Motivation

Example: Load balancing (2)

Program transformation:

vars n, a, b;

/* Pre: n : (≥ 3 r A) u (≤ 1 r B) */

while ( n : (> 2 r A) ) do {
/* Inv: n : (≥ 2 r A) u (∀ r B) */
select a sth a : A ∧ (n r a);
delete(n r a);
select b sth b : B ;
add(n r b)
}

}
/* Post: n : (= 2 r A) u (∀ r B) */
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Motivation

Approach

Programming language:

Basis: Imperative programming language
Conditions: Description logic (DL) formulae
Generalized assignment statement: select

Computing weakest preconditions:
Yields a formula not directly representable as DL formula
Therefore: extend DL syntax with new constructor: explicit
substitution

Deciding weakest preconditions: Tableau calculus interleaving
traditional DL rules
“pushing down” explicit substitutions
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Description Logic

Description logics

Traditionally: Family of logics (usually decidable) that are
sub-languages of FO logic
variants of modal logics
cheap forms of set theory
Distinction between:

TBOX (for “terminological” reasoning):
involving concepts and roles
ABOX (for “assertional” reasoning): adding individuals

Here: Three levels:
Concepts (≈ TBOX)
Facts (≈ ABOX)
Formulas (Boolean combination of facts, limited quantification)
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Description Logic

Substitutions and Concepts

Substitutions:
σ ::= [x := y ] (variable replacement)

| [r := r − (x , y)] (relation substraction)
| [r := r + (x , y)] (relation addition)

Concepts:
C ::= c (atomic concept)

| ¬ C (negation)
| C u C (conjunction)
| C t C (disjunction)
| (≥ n r C) (at least)
| (< n r C) (no more than)
| C σ (explicit substitution)
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Description Logic

Facts

fact ::= i : C (instance of concept)
| i r i (instance of role)
| i (¬r) i (instance of role complement)
| i = i (equality of instances)
| i 6= i (inequality of instances)

10 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013



Description Logic

Formulas

form ::= ⊥
| fact
| ¬form
| form ∧ form | form ∨ form
| ∀i .form | ∃i .form
| form σ
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Description Logic

The logic ALC: Syntax

Roles: Here only atomic roles

Concepts:

C,D ::= A (atomic concept)
| > (universal concept Top)
| ⊥ (empty concept Bottom)
| ¬ C (negation)
| C u D (conjunction)
| C t D (disjunction)
| ∀ R C (for all in relation)
| ∃ R C (there are some in relation)

Attention, ∀ and ∃ are not quantifiers, R not bound in C !
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Description Logic

The logic ALC: Semantics (1)

Interpretation I composed of basic interpretations
Ic : conceptname⇒ ∆ set
Ir : rolename⇒ (∆×∆) set
Ii : indivname⇒ ∆

Interpretation of concepts

I(A) = Ic(A)
I(>) = ∆I
I(⊥) = ∅
I(C u D) = I(C) ∩ I(D)
I(C t D) = I(C) ∪ I(D)
I(¬C) = ∆I − I(C)
I(≥ n r C) = {x | card{y | (x , y) ∈ I(r) ∧ y ∈ I(C)} ≥ n}
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Description Logic

The logic ALC: Semantics (2)

Interpretation of roles: RI = Ir (R)
Interpretation of substitutions:

I([r := r + (x , y)]) = IIr (r) := Ir (r) ∪ {(Ic(x), Ic(y)}

Interpretation of facts:

I(x : C) = Ii(x) ∈ I(C)
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Description Logic

The logic ALC: ABOXes

Idea of ABOXes: Introduce individuals
Syntax: ABOX is finite set of assertions of the form:

x : C, where x is the name of an individual and C a concept
xRy , where x , y are the names individuals and R is a role

Semantics: evident
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Programming Language

Programs and their semantics (1)

(Big-step) operational semantics: defines transition relation

(c, s)⇒ s′

between:
command c
initial state s
end state s′

Notion of state:
Arithmetic programs: state ≡ var ⇒ int
(pure) OO programs: state ≡ addr ⇒ obj option, where
obj ≡ field list and field ≡ ident × addr
graph programs: to be discussed
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Programming Language

Programs and their semantics (2)

Programs / commands c usually defined by an abstract syntax /
inductive type:
c ::= x = e (x variable, e expression)

| c1; c2
| if e then c1 else c2
| while e do c

Typical rules of the semantics (for arithmetic programs):

eval(e, s) = v

(x = e, s)⇒ s(x := v)

eval(e, s) 6= 0 (c, s)⇒ s′′ (while e do c, s′′)⇒ s′

(while e do c, s)⇒ s′
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Programming Language

Programs (1)

Basic programs:
basic ::= x = new C (create new node of C, assign to x)

| delete(x) (delete node)
| delete(x R y) (delete arc)
| add(x R y) (add arc)

To be discussed:
new C for “empty” concept C?
delete(x) for linked x?
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Programming Language

Programs (2)

Composite programs:
prog ::= basic

| prog; prog
| if form then prog else prog
| while form prog
| select var sth form in prog

Notes:
select v sth f in p binds v in f and p
Computation of weakest precondtion is standard for sequence,
if, while
Needs to be explored for select and basic statements.
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Programming Language

Syntax

stmt ::= Skip (empty statement)
| select i sth form (assignment)
| delrel(i r i) (delete arc in relation)
| insrel(i r i) (insert arc in relation)
| stmt ; stmt (sequence)
| if form then stmt else stmt
| while form do stmt
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Programming Language

Semantics

(Skip, σ)⇒ σ
(Skip)

(c1, σ)⇒ σ′′ (c2, σ
′′)⇒ σ′

(c1;c2, σ)⇒ σ′
(Seq)
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Programming Language

Semantics

σ′ = delete_edge v1 r v2 σ

(delrel(v1 r v2), σ)⇒ σ′
(EDel)

σ′ = generate_edge v1 r v2 σ

(insrel(v1 r v2), σ)⇒ σ′
(EGen)

∃vi .(σ′ = σ[v :=vi] ∧ σ′(b))

(select v sth b, σ)⇒ σ′
(SelAssT )
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Programming Language

Semantics

σ(b) (c1, σ)⇒ σ′

(if b then c1 else c2, σ)⇒ σ′
(IfT )

¬σ(b) (c2, σ)⇒ σ′

(if b then c1 else c2, σ)⇒ σ′
(IfF )

σ(b) (c, σ)⇒ σ′′ (while b do c, σ′′)⇒ σ′

(while b do c, σ)⇒ σ′
(WT )

¬σ(b)

(while b do c, σ)⇒ σ
(WF )
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Weakest preconditions

Hoare logics (1)

Reasoning about programs:
1 assertions in a given “background logic” (“shallow embedding”)
 might be too expressive (undecidable reasoning)

2 for a dedicated logic (“deep embedding”)
does this logic attain a sufficiently high precision?
is it closed under programming language ops?

Approach 1: Assertion-style reasoning
An assertion is a state predicate (i.e., a set of states):
assn ≡ (state⇒ bool)

Example:
{x ≥ y } x = x + 2; y = y + 1; {x > y }
Here, {x ≥ y } describes the state set {s.(s x) ≥ (s y)}
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Weakest preconditions

Hoare logics (2)

Typical Hoare rules:

{Q[x := e]}x = e{Q}
{P}c1{R} {R}c2{Q}

{P}c1; c2{Q}

“Weakening”:

{P ′}c{Q′} P ′ −→ P Q −→ Q′

{P}c{Q}

Shorthand: Q[x := e] = λs.Q(s(x := eval(e, s)))
codable in Lambda-calculus. But in less expressive logics?
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Weakest preconditions

Hoare logics (3)

Avoid “weakening”: To show {P}c{Q}
1 compute weakest precondition wp(c,Q)

2 show P −→ wp(c,Q)

wp progressively eliminates all program statements:
wp(x = e, Q) = Q[x := e]

wp(c1; c2, Q) = wp(c1, wp(c2, Q))

Example:

wp(x = x + 2;y = y + 1, x > y)

= wp(x = x + 2,wp(y = y + 1, x > y))

= wp(x = x + 2, x > y + 1)

= x + 2 > y + 1

Now, show x ≥ y −→ x + 2 > y + 1
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Weakest preconditions

Hoare logics

Approach 2: Deep embedding for dedicated logic
Instead of using an expressive logic: use a restricted (decidable) logic
Questions:

Is it closed under conditions of if and while?
Is the logic closed under basic operations (e.g. assignment)?

Illustration: Assume the propositions of the logic are formed according
to the grammar:
e ::= x variable

| e + n addition of natural number constant n
p ::= x = e basic propositions

Computing wp(x = x + 5, x = y + 2) = (x + 5 = y + 2)
which is not well-formed according to the grammar of propositions.
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Weakest preconditions

Weakest preconditions

wp(Skip, Q) = Q
wp(delrel(v1 r v2), Q) = Q[r := r − (v1, v2)]
wp(insrel(v1 r v2), Q) = Q[r := r + (v1, v2)]
wp(select v sth b, Q) = ∀v .(b −→ Q)
wp(c1; c2, Q) = wp(c1,wp(c2, Q))
wp(if b then c1 else c2, Q) = ite(b,wp(c1,Q),wp(c2,Q))
wp(while{iv} b do c, Q) = iv
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Weakest preconditions

Verification conditions

vc(Skip, Q) = >
vc(delrel(v1 r v2), Q) = >
vc(insrel(v1 r v2), Q) = >
vc(select v sth b, Q) = >
vc(c1; c2, Q) = vc(c1,wp(c2,Q)) ∧ vc(c2,Q)
vc(if b then c1 else c2, Q) = vc(c1,Q) ∧ vc(c2,Q)
vc(while{iv} b do c, Q) = (iv ∧ ¬b −→ Q) ∧ (iv ∧ b −→ wp(c, iv)) ∧ vc(c, iv)
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Decision procedure

The logic ALC: Tableau calculus

Related inferences:
Subsumption: C v D, equivalent to C u ¬D = ⊥
Emptyness: C = ⊥, equivalent to C v ⊥

usually reduced to: check satisfiability of ABOX x : C, for fresh x
Typical tableau rules: After conversion to negation normal form:

x : (C t D) x : C or x : (C t D) x : D
x : (C u D) x : C, x : D
x : (∀ R C), (xRy) y : C
x : (∃ R C) (xRy), y : C
for fresh y ; provided these two facts do not yet exist on the branch
remove contradictory branches: x : C, x : ¬C

until model found
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Decision procedure

Variants of DLs

Number restrictions: concept constructors

(≥ n R C) means {x .card({y .(x , y) ∈ RI ∧ y ∈ CI}) ≥ n}
“the set of all x connected to more than n C-nodes via R”
(< n R C) (analogous)

Allow to define the constructors (∀ R C) and (∃ R C), for example:
(∃ R C) = (≥ 1 R C)

(∀ R C) = (< 1 R (¬C))
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Decision procedure

Take some liberty with DL

DL Concepts C: As outlined before: > . . . (< n R C)
DL Roles R: Atomic roles: (x r y) and role negation (x r y)
DL Facts Fact
fact ::= x : C (instance of concept)

| x R y (instance of role)
| x = y (equality of instances)
| x 6= y (inequality of instances)

Note: Facts closed by negation
DL Forms Form: Boolean combinations of facts
Examples:

x : A ∧ x : B is a Form equivalent to the fact x : A u B
a : A ∧ (n r a) is a Form that does not correspond to a DL concept
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Decision procedure

Weakest preconditions: Relation deletion

What one would like to do:
{Q[r := r − (v1, v2)]} delete(v1 r v2) {Q}
But what is Q[r := r − (v1, v2)]? Is it a DL-formula after all?
Definition by recursion over Q:

(P ∧Q)[r := r − (v1, v2)] = P[r := r − (v1, v2)]∧Q[r := r − (v1, v2)]

Assuming C does not contain r , and x 6= v1:
(x : (< n r C))[r := r − (v1, v2)] = (x : (< n r C))

Assuming C does not contain r , and x = v1 and v2 : C and v1 r v2:
(x : (< n r C))[r := r − (v1, v2)] = (x : (< (n + 1) r C))

And what if C contains r? Intertwine tableau construction and
wp-calculus?
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Decision procedure

Elimination of substitutions (1)

Equality / Inequality:

(x = y)[r := re] reduces to (x = y)

(x 6= y)[r := re] reduces to (x 6= y)

Roles:

(x r y)[r := r − (v1, v2)] reduces to
(¬((x = v1) ∧ (y = v2))) ∧ (x r y)

(x (¬r) y)[r := r − (v1, v2)] reduces to
((x = v1) ∧ (y = v2)) ∨ (x (¬r) y)

(x r y)[r := r + (v1, v2)] reduces to ((x = v1) ∧ (y = v2)) ∨ (x r y)

(x (¬r) y)[r := r + (v1, v2)] reduces to
(¬((x = v1) ∧ (y = v2))) ∧ (x (¬r) y)
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Decision procedure

Elimination of substitutions (2)

(x : ¬C)[r := re] reduces to x : (¬C[r := re])

(x : (≥ n r C))[r := r − (v1, v2)] reduces to

ite ((x = v1) ∧ (v2 : (C[r := r − (v1, v2)])) ∧ (v1 r v2),
(x : (≥ (n + 1) r (C[r := r − (v1, v2)]))),
(x : (≥ n r (C[r := r − (v1, v2)]))))

and similarly when replacing ≥ by <
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Conclusions

Pragmatics (1)

Extract a verified transformation engine and program proof
environment

Operational
semantics

Program
logic

Decision
procedure

Code Extraction (Scala)

Environment
(Eclipse/Xtext)

Verified
transfo
engine

Verified
progr.
prover
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Conclusions

Pragmatics (2)

Applications in:
Model transformations (UML-style): preservation of cardinality
restrictions
Schema updates for expressive data bases
Transformation of ontologies ( CIMI working group)
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Conclusions

Fundamental questions

Extension of the programming language
Generalized iterators (map / reduce)
Procedures (currently only: statements)
Allow creation and deletion of nodes modeling a heap

Facilitating program proofs:
Generation of counter-examples out of failed proofs
Automatic inference of loop invariants
Automatic derivation of programs out of specifications

More expressive logics
More expressive role operations: union/ intersection; transitive
closure
Radical departure: realization of MSO-definable transductions?
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