
Logical foundations for reasoning about
transformations of knowledge bases

Martin Strecker
joint work with Mohamed Chaabani and Rachid Echahed

Université de Toulouse/IRIT

DynRes / CLIMT, 30/5/2013

1 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Motivation

Plan

1 Motivation

2 Description Logic

3 Programming Language

4 Weakest preconditions

5 Decision procedure

6 Conclusions

2 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Motivation

Avant-Propos

The slides are in a very preliminary state.
For the accompanying paper and (eventually also) the formal Isabelle
development, visit:
http://www.irit.fr/~Martin.Strecker/Publications/dl_
transfo2013.html

3 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

http://www.irit.fr/~Martin.Strecker/Publications/dl_transfo2013.html
http://www.irit.fr/~Martin.Strecker/Publications/dl_transfo2013.html

Motivation

Example: Load balancing (1)

n : N

a1 : A

a2 : A

a3 : A

b1 : B

b2 : B

n : N

a1 : A

a2 : A

a3 : A

b1 : B

b2 : B

Setup: Routers of categories A and B, communication node n : N
Initially: Node n connected to too many nodes of type A
Purpose: Swap some of these connections to nodes of type B

4 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Motivation

Example: Load balancing (2)

Program transformation:

vars n, a, b;

/* Pre: n : (≥ 3 r A) u (≤ 1 r B) */

while (n : (> 2 r A)) do {
/* Inv: n : (≥ 2 r A) u (∀ r B) */
select a sth a : A ∧ (n r a);
delete(n r a);
select b sth b : B ;
add(n r b)
}

}
/* Post: n : (= 2 r A) u (∀ r B) */

5 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Motivation

Approach

Programming language:

Basis: Imperative programming language
Conditions: Description logic (DL) formulae
Generalized assignment statement: select

Computing weakest preconditions:
Yields a formula not directly representable as DL formula
Therefore: extend DL syntax with new constructor: explicit
substitution

Deciding weakest preconditions: Tableau calculus interleaving
traditional DL rules
“pushing down” explicit substitutions

6 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

Plan

1 Motivation

2 Description Logic

3 Programming Language

4 Weakest preconditions

5 Decision procedure

6 Conclusions

7 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

Description logics

Traditionally: Family of logics (usually decidable) that are
sub-languages of FO logic
variants of modal logics
cheap forms of set theory
Distinction between:

TBOX (for “terminological” reasoning):
involving concepts and roles
ABOX (for “assertional” reasoning): adding individuals

Here: Three levels:
Concepts (≈ TBOX)
Facts (≈ ABOX)
Formulas (Boolean combination of facts, limited quantification)

8 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

Substitutions and Concepts

Substitutions:
σ ::= [x := y] (variable replacement)

| [r := r − (x , y)] (relation substraction)
| [r := r + (x , y)] (relation addition)

Concepts:
C ::= c (atomic concept)

| ¬ C (negation)
| C u C (conjunction)
| C t C (disjunction)
| (≥ n r C) (at least)
| (< n r C) (no more than)
| C σ (explicit substitution)

9 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

Facts

fact ::= i : C (instance of concept)
| i r i (instance of role)
| i (¬r) i (instance of role complement)
| i = i (equality of instances)
| i 6= i (inequality of instances)

10 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

Formulas

form ::= ⊥
| fact
| ¬form
| form ∧ form | form ∨ form
| ∀i .form | ∃i .form
| form σ

11 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

The logic ALC: Syntax

Roles: Here only atomic roles

Concepts:

C,D ::= A (atomic concept)
| > (universal concept Top)
| ⊥ (empty concept Bottom)
| ¬ C (negation)
| C u D (conjunction)
| C t D (disjunction)
| ∀ R C (for all in relation)
| ∃ R C (there are some in relation)

Attention, ∀ and ∃ are not quantifiers, R not bound in C !

12 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

The logic ALC: Semantics (1)

Interpretation I composed of basic interpretations
Ic : conceptname⇒ ∆ set
Ir : rolename⇒ (∆×∆) set
Ii : indivname⇒ ∆

Interpretation of concepts

I(A) = Ic(A)
I(>) = ∆I
I(⊥) = ∅
I(C u D) = I(C) ∩ I(D)
I(C t D) = I(C) ∪ I(D)
I(¬C) = ∆I − I(C)
I(≥ n r C) = {x | card{y | (x , y) ∈ I(r) ∧ y ∈ I(C)} ≥ n}

13 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

The logic ALC: Semantics (2)

Interpretation of roles: RI = Ir (R)
Interpretation of substitutions:

I([r := r + (x , y)]) = IIr (r) := Ir (r) ∪ {(Ic(x), Ic(y)}

Interpretation of facts:

I(x : C) = Ii(x) ∈ I(C)

14 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Description Logic

The logic ALC: ABOXes

Idea of ABOXes: Introduce individuals
Syntax: ABOX is finite set of assertions of the form:

x : C, where x is the name of an individual and C a concept
xRy , where x , y are the names individuals and R is a role

Semantics: evident

15 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Plan

1 Motivation

2 Description Logic

3 Programming Language

4 Weakest preconditions

5 Decision procedure

6 Conclusions

16 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Programs and their semantics (1)

(Big-step) operational semantics: defines transition relation

(c, s)⇒ s′

between:
command c
initial state s
end state s′

Notion of state:
Arithmetic programs: state ≡ var ⇒ int
(pure) OO programs: state ≡ addr ⇒ obj option, where
obj ≡ field list and field ≡ ident × addr
graph programs: to be discussed

17 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Programs and their semantics (2)

Programs / commands c usually defined by an abstract syntax /
inductive type:
c ::= x = e (x variable, e expression)

| c1; c2
| if e then c1 else c2
| while e do c

Typical rules of the semantics (for arithmetic programs):

eval(e, s) = v

(x = e, s)⇒ s(x := v)

eval(e, s) 6= 0 (c, s)⇒ s′′ (while e do c, s′′)⇒ s′

(while e do c, s)⇒ s′

18 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Programs (1)

Basic programs:
basic ::= x = new C (create new node of C, assign to x)

| delete(x) (delete node)
| delete(x R y) (delete arc)
| add(x R y) (add arc)

To be discussed:
new C for “empty” concept C?
delete(x) for linked x?

19 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Programs (2)

Composite programs:
prog ::= basic

| prog; prog
| if form then prog else prog
| while form prog
| select var sth form in prog

Notes:
select v sth f in p binds v in f and p
Computation of weakest precondtion is standard for sequence,
if, while
Needs to be explored for select and basic statements.

20 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Syntax

stmt ::= Skip (empty statement)
| select i sth form (assignment)
| delrel(i r i) (delete arc in relation)
| insrel(i r i) (insert arc in relation)
| stmt ; stmt (sequence)
| if form then stmt else stmt
| while form do stmt

21 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Semantics

(Skip, σ)⇒ σ
(Skip)

(c1, σ)⇒ σ′′ (c2, σ
′′)⇒ σ′

(c1;c2, σ)⇒ σ′
(Seq)

22 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Semantics

σ′ = delete_edge v1 r v2 σ

(delrel(v1 r v2), σ)⇒ σ′
(EDel)

σ′ = generate_edge v1 r v2 σ

(insrel(v1 r v2), σ)⇒ σ′
(EGen)

∃vi .(σ′ = σ[v :=vi] ∧ σ′(b))

(select v sth b, σ)⇒ σ′
(SelAssT)

23 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Programming Language

Semantics

σ(b) (c1, σ)⇒ σ′

(if b then c1 else c2, σ)⇒ σ′
(IfT)

¬σ(b) (c2, σ)⇒ σ′

(if b then c1 else c2, σ)⇒ σ′
(IfF)

σ(b) (c, σ)⇒ σ′′ (while b do c, σ′′)⇒ σ′

(while b do c, σ)⇒ σ′
(WT)

¬σ(b)

(while b do c, σ)⇒ σ
(WF)

24 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Weakest preconditions

Plan

1 Motivation

2 Description Logic

3 Programming Language

4 Weakest preconditions

5 Decision procedure

6 Conclusions

25 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Weakest preconditions

Hoare logics (1)

Reasoning about programs:
1 assertions in a given “background logic” (“shallow embedding”)
 might be too expressive (undecidable reasoning)

2 for a dedicated logic (“deep embedding”)
does this logic attain a sufficiently high precision?
is it closed under programming language ops?

Approach 1: Assertion-style reasoning
An assertion is a state predicate (i.e., a set of states):
assn ≡ (state⇒ bool)

Example:
{x ≥ y } x = x + 2; y = y + 1; {x > y }
Here, {x ≥ y } describes the state set {s.(s x) ≥ (s y)}

26 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Weakest preconditions

Hoare logics (2)

Typical Hoare rules:

{Q[x := e]}x = e{Q}
{P}c1{R} {R}c2{Q}

{P}c1; c2{Q}

“Weakening”:

{P ′}c{Q′} P ′ −→ P Q −→ Q′

{P}c{Q}

Shorthand: Q[x := e] = λs.Q(s(x := eval(e, s)))
codable in Lambda-calculus. But in less expressive logics?

27 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Weakest preconditions

Hoare logics (3)

Avoid “weakening”: To show {P}c{Q}
1 compute weakest precondition wp(c,Q)

2 show P −→ wp(c,Q)

wp progressively eliminates all program statements:
wp(x = e, Q) = Q[x := e]

wp(c1; c2, Q) = wp(c1, wp(c2, Q))

Example:

wp(x = x + 2;y = y + 1, x > y)

= wp(x = x + 2,wp(y = y + 1, x > y))

= wp(x = x + 2, x > y + 1)

= x + 2 > y + 1

Now, show x ≥ y −→ x + 2 > y + 1

28 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Weakest preconditions

Hoare logics

Approach 2: Deep embedding for dedicated logic
Instead of using an expressive logic: use a restricted (decidable) logic
Questions:

Is it closed under conditions of if and while?
Is the logic closed under basic operations (e.g. assignment)?

Illustration: Assume the propositions of the logic are formed according
to the grammar:
e ::= x variable

| e + n addition of natural number constant n
p ::= x = e basic propositions

Computing wp(x = x + 5, x = y + 2) = (x + 5 = y + 2)
which is not well-formed according to the grammar of propositions.

29 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Weakest preconditions

Weakest preconditions

wp(Skip, Q) = Q
wp(delrel(v1 r v2), Q) = Q[r := r − (v1, v2)]
wp(insrel(v1 r v2), Q) = Q[r := r + (v1, v2)]
wp(select v sth b, Q) = ∀v .(b −→ Q)
wp(c1; c2, Q) = wp(c1,wp(c2, Q))
wp(if b then c1 else c2, Q) = ite(b,wp(c1,Q),wp(c2,Q))
wp(while{iv} b do c, Q) = iv

30 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Weakest preconditions

Verification conditions

vc(Skip, Q) = >
vc(delrel(v1 r v2), Q) = >
vc(insrel(v1 r v2), Q) = >
vc(select v sth b, Q) = >
vc(c1; c2, Q) = vc(c1,wp(c2,Q)) ∧ vc(c2,Q)
vc(if b then c1 else c2, Q) = vc(c1,Q) ∧ vc(c2,Q)
vc(while{iv} b do c, Q) = (iv ∧ ¬b −→ Q) ∧ (iv ∧ b −→ wp(c, iv)) ∧ vc(c, iv)

31 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Decision procedure

Plan

1 Motivation

2 Description Logic

3 Programming Language

4 Weakest preconditions

5 Decision procedure

6 Conclusions

32 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Decision procedure

The logic ALC: Tableau calculus

Related inferences:
Subsumption: C v D, equivalent to C u ¬D = ⊥
Emptyness: C = ⊥, equivalent to C v ⊥

usually reduced to: check satisfiability of ABOX x : C, for fresh x
Typical tableau rules: After conversion to negation normal form:

x : (C t D) x : C or x : (C t D) x : D
x : (C u D) x : C, x : D
x : (∀ R C), (xRy) y : C
x : (∃ R C) (xRy), y : C
for fresh y ; provided these two facts do not yet exist on the branch
remove contradictory branches: x : C, x : ¬C

until model found

33 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Decision procedure

Variants of DLs

Number restrictions: concept constructors

(≥ n R C) means {x .card({y .(x , y) ∈ RI ∧ y ∈ CI}) ≥ n}
“the set of all x connected to more than n C-nodes via R”
(< n R C) (analogous)

Allow to define the constructors (∀ R C) and (∃ R C), for example:
(∃ R C) = (≥ 1 R C)

(∀ R C) = (< 1 R (¬C))

34 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Decision procedure

Take some liberty with DL

DL Concepts C: As outlined before: > . . . (< n R C)
DL Roles R: Atomic roles: (x r y) and role negation (x r y)
DL Facts Fact
fact ::= x : C (instance of concept)

| x R y (instance of role)
| x = y (equality of instances)
| x 6= y (inequality of instances)

Note: Facts closed by negation
DL Forms Form: Boolean combinations of facts
Examples:

x : A ∧ x : B is a Form equivalent to the fact x : A u B
a : A ∧ (n r a) is a Form that does not correspond to a DL concept

35 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Decision procedure

Weakest preconditions: Relation deletion

What one would like to do:
{Q[r := r − (v1, v2)]} delete(v1 r v2) {Q}
But what is Q[r := r − (v1, v2)]? Is it a DL-formula after all?
Definition by recursion over Q:

(P ∧Q)[r := r − (v1, v2)] = P[r := r − (v1, v2)]∧Q[r := r − (v1, v2)]

Assuming C does not contain r , and x 6= v1:
(x : (< n r C))[r := r − (v1, v2)] = (x : (< n r C))

Assuming C does not contain r , and x = v1 and v2 : C and v1 r v2:
(x : (< n r C))[r := r − (v1, v2)] = (x : (< (n + 1) r C))

And what if C contains r? Intertwine tableau construction and
wp-calculus?

36 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Decision procedure

Elimination of substitutions (1)

Equality / Inequality:

(x = y)[r := re] reduces to (x = y)

(x 6= y)[r := re] reduces to (x 6= y)

Roles:

(x r y)[r := r − (v1, v2)] reduces to
(¬((x = v1) ∧ (y = v2))) ∧ (x r y)

(x (¬r) y)[r := r − (v1, v2)] reduces to
((x = v1) ∧ (y = v2)) ∨ (x (¬r) y)

(x r y)[r := r + (v1, v2)] reduces to ((x = v1) ∧ (y = v2)) ∨ (x r y)

(x (¬r) y)[r := r + (v1, v2)] reduces to
(¬((x = v1) ∧ (y = v2))) ∧ (x (¬r) y)

37 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Decision procedure

Elimination of substitutions (2)

(x : ¬C)[r := re] reduces to x : (¬C[r := re])

(x : (≥ n r C))[r := r − (v1, v2)] reduces to

ite ((x = v1) ∧ (v2 : (C[r := r − (v1, v2)])) ∧ (v1 r v2),
(x : (≥ (n + 1) r (C[r := r − (v1, v2)]))),
(x : (≥ n r (C[r := r − (v1, v2)]))))

and similarly when replacing ≥ by <

38 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Conclusions

Plan

1 Motivation

2 Description Logic

3 Programming Language

4 Weakest preconditions

5 Decision procedure

6 Conclusions

39 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Conclusions

Pragmatics (1)

Extract a verified transformation engine and program proof
environment

Operational
semantics

Program
logic

Decision
procedure

Code Extraction (Scala)

Environment
(Eclipse/Xtext)

Verified
transfo
engine

Verified
progr.
prover

40 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Conclusions

Pragmatics (2)

Applications in:
Model transformations (UML-style): preservation of cardinality
restrictions
Schema updates for expressive data bases
Transformation of ontologies (CIMI working group)

41 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

Conclusions

Fundamental questions

Extension of the programming language
Generalized iterators (map / reduce)
Procedures (currently only: statements)
Allow creation and deletion of nodes modeling a heap

Facilitating program proofs:
Generation of counter-examples out of failed proofs
Automatic inference of loop invariants
Automatic derivation of programs out of specifications

More expressive logics
More expressive role operations: union/ intersection; transitive
closure
Radical departure: realization of MSO-definable transductions?

42 Logical foundations for reasoning about
transformations of knowledge bases

Université de Toulouse/IRIT DynRes / CLIMT, 30/5/2013

	Motivation
	Description Logic
	Programming Language
	Weakest preconditions
	Decision procedure
	Conclusions

