The dynamic logic of propositional assignments

Andreas Herzig
University of Toulouse, CNRS, IRIT, France
joint work with Philippe Balbiani (Toulouse) and Nicolas Troquard (Trento)

February 2013

Overview

- PDL: abstract actions only

Propositional dynamic logic "abstracts away from the nature of the domain of computation and studies the pure interaction between programs and propositions" [Harel et al. 2000]

- concrete programs: propositional assignments $p \leftarrow \varphi=" p$ is assigned the truth value of φ "

Outline

(1) The logic of propositional assignments

2 Complexity of satisfiability

DL-PA: language

- $\operatorname{Prp}=\{p, q, \ldots\}=$ set of propositional variables
- programs:
- $p \leftarrow \varphi=$ " p is assigned the truth value of φ "
- N.B.: don't confuse with assignments of object variables $x \leftarrow t$ of first-order dynamic logic
- complex assignment programs: $p \leftarrow T \cup p \leftarrow \perp, \ldots$
- formulas: ...

DL-PA: language, ctd.

- BNF for assignment programs π and formulas φ :

$$
\begin{aligned}
\pi & :=p \leftarrow \varphi|\pi ; \pi| \pi \cup \pi\left|\pi^{*}\right| \varphi ? \\
\varphi & :=p|\top| \perp|\neg \varphi| \varphi \vee \varphi \mid[\pi] \varphi
\end{aligned}
$$

- just as in PDL:
- skip $\stackrel{\text { def }}{=} \mathrm{T}$?
- if φ then π_{1} else $\pi_{2} \stackrel{\text { def }}{=} \ldots$
- while φ do $\pi \stackrel{\text { def }}{=} \ldots$

Models

- valuations $V \subseteq \operatorname{Prp}$
- interpretation of a formula $=$ set of valuations
- $\|\varphi\|=\left\{V_{1}, V_{2}, \ldots\right\}$
- interpretation of a modality = relation on the set of valuations
- $\|\pi\|=\left\{\left\langle V_{1}, V_{1}^{\prime}\right\rangle,\left\langle V_{2}, V_{2}^{\prime}\right\rangle, \ldots\right\}$

Interpretation of formulas

$$
\begin{aligned}
\|T\| & =2^{\operatorname{Prp}} \\
\|\perp\| & =\emptyset \\
\|p\| & =\{V: p \in V\} \\
\|\neg \varphi\| & =\cdots \\
\|\varphi \vee \psi\| & =\cdots \\
\|[\pi] \varphi\| & =\left\{V: \text { for every } V^{\prime} \text { s.th. } V\|\pi\| V^{\prime}, V^{\prime} \in\|\varphi\|\right\}
\end{aligned}
$$

Interpretation of assignment programs

$$
\begin{aligned}
&\|p \leftarrow \varphi\|=\left\{\left\langle V, V^{\prime}\right\rangle: V^{\prime}=V \cup\{p\} \text { if } V \in\|\varphi\|,\right. \text { and } \\
&\left.V^{\prime}=V \backslash\{p\} \text { if } V \notin\|\varphi\|\right\} \\
&\left\|\pi_{1} ; \pi_{2}\right\|=\left\|\pi_{1}\right\| \circ\left\|\pi_{2}\right\| \\
&\left\|\pi_{1} \cup \pi_{2}\right\|=\left\|\pi_{1}\right\| \cup\left\|\pi_{2}\right\| \\
&\left\|\pi^{*}\right\|=(\|\pi\|)^{*} \\
&\|\varphi ?\|=\{\langle V, V\rangle: V \in\|\varphi\|\}
\end{aligned}
$$

Example:
$\|p \leftarrow \varphi\|=\|(\varphi ? ; p \leftarrow T) \cup(\neg \varphi ? ; p \leftarrow \perp)\|$
Example:
$\|\langle p \leftarrow \varphi\rangle \mathrm{T}\|=2^{\text {Prp }}$

Satisfiability and validity

φ satisfiable iff $\quad\|\varphi\| \neq\|\perp\|$
φ is valid \quad iff $\quad\|\varphi\|=\|T\|$

Complexity of DL-PA satisfiability: overview

NP complete

PSPACE complete EXPTIME complete undecidable
if no complex programs
(apply reduction axioms)
if star-free (no π^{*}) [Herzig et al. IJCAI 2011]
for full language (v.i.)
if moreover abstract actions à la PDL
[Tiomkin and Makowsky 1985]

Outline

(1) The logic of propositional assignments

DL-PA: decidability

key step: eliminate the Kleene star
(- choose some π^{*} such that π is star-free
(2) transform π into

$$
\left(\varphi_{1} ? ; \alpha_{1}\right) \cup \cdots \cup\left(\varphi_{n} ? ; \alpha_{n}\right)
$$

where every α_{k} is a sequence of assignments
(3) make all the assignment sequences α_{k} assign exactly the same variables:

$$
\left(\varphi_{1} ? ; \alpha_{1}\right) \cup \cdots \cup\left(\varphi_{n} ? ; \alpha_{n}\right) \text { and } \operatorname{Prp}_{\alpha_{1}}=\ldots=\operatorname{Prp}_{\alpha_{n}}
$$

(a) replace π^{*} by

$$
\left(\left(\varphi_{1} ? ; \alpha_{1}\right) \cup \cdots \cup\left(\varphi_{n} ? ; \alpha_{n}\right)\right)^{\leq n}
$$

(uses that $\operatorname{Prp}_{\alpha_{k}}=\operatorname{Prp}_{\alpha_{l}}$ implies $\alpha_{k} ; \alpha_{l}=\alpha_{l}$)

DL-PA: complexity of the star-free fragment

Theorem ([Herzig et al. IJCAI 2011])

Satisfiability checking is PSPACE-complete for the star-free fragment of DL-PA.

- hardness: encode QBF
- membership:
(1) satisfiability is in NPSPACE: guess valuation V; check $V \in\|\varphi\|$
(2) NPSPACE $=$ PSPACE [Savitch]

Full DL-PA: complexity

Theorem

Both model checking (MC) and satisfiability checking (SAT) are EXPTIME-complete.

- membership of SAT: translate into PDL
- hardness of MC: encode PEEK-G5
- alternative: encode corridor tiling problem, cf. PDL [Harel et al. 2000]
- polynomial transformation from MC into SAT: $V \in\|\varphi\|$ iff $\varphi \wedge\left(\bigwedge_{p \in V \cap \operatorname{Prp}_{\varphi}} p\right) \wedge\left(\bigwedge_{p \notin \vee \cap \operatorname{Prp}_{\varphi}} \neg p\right)$ satisfiable

Full DL-PA: proof of EXPTIME hardness

(${ }^{\text {PEEK }}-\mathrm{G}_{5}\left(\operatorname{Prp}_{E}, \operatorname{Prp}_{A}, \Phi, V_{0}, \tau\right)$:

- propositional variables of Prp partitioned among Abelard and Eloïse
- Prp_{A} : propositional variables of Abelard
- Prp_{E} : propositional variables of Eloïse
- $\operatorname{Prp}_{A} \cup \operatorname{Prp}_{E}=\operatorname{Prp}, \operatorname{Prp}_{A} \cap \operatorname{Prp}_{E}=\emptyset$
- V_{0} is the initial valuation
- A and E alternatively choose one of their variables and change its truth value
- player $\tau \in\{A, E\}$ begins
- Eloïse wins if Φ is true
- "does Eloïse have a winning strategy?"
- EXPTIME complete [Stockmeyer and Chandra 79]

Full DL-PA: proof of EXPTIME hardness, ctd.

- define valuation V_{1} :

$$
V_{1}= \begin{cases}V_{0} \cup\{\text { nowinE, turnE }\} & \text { if } \tau=E \\ V_{0} \cup\{\text { nowinE }\} & \text { if } \tau=A\end{cases}
$$

- define a 'move' program:

$$
\begin{aligned}
\text { moveE } & =\text { turnE?; } \bigcup_{x \in \operatorname{Prp}_{E}}(x \leftarrow \perp \cup x \leftarrow T) ; \text { turnE } \leftarrow \perp \\
\text { moveA } & =\neg \text { turnE } ? ; \bigcup_{y \in \operatorname{Prp}_{A}}(y \leftarrow \perp \cup y \leftarrow T) ; \text { turnE } \leftarrow T \\
\text { move } & =(\text { moveE } \cup \text { moveA }) ;((\Phi ? ; \text { nowinE } \leftarrow \perp) \cup \neg \Phi ?)
\end{aligned}
$$

Eloïse has no winning strategy iff

Full DL-PA: proof of EXPTIME hardness, ctd.

- define valuation V_{1} :

$$
V_{1}= \begin{cases}V_{0} \cup\{\text { nowinE, turnE }\} & \text { if } \tau=E \\ V_{0} \cup\{\text { nowinE }\} & \text { if } \tau=A\end{cases}
$$

- define a 'move' program:

$$
\begin{aligned}
\text { moveE } & =\text { turnE } ? ; \bigcup_{x \in \operatorname{Prp}_{E}}(x \leftarrow \perp \cup x \leftarrow T) ; \text { turnE } \leftarrow \perp \\
\text { moveA } & =\neg \text { turnE } ; \bigcup_{y \in \operatorname{Prp}_{A}}(y \leftarrow \perp \cup y \leftarrow T) ; \text { turnE } \leftarrow T \\
\text { move } & =(\text { moveE } \cup \text { moveA }) ;((\Phi ? ; \text { nowinE } \leftarrow \perp) \cup \neg \Phi ?)
\end{aligned}
$$

Lemma

Eloïse has no winning strategy iff

$$
\begin{aligned}
& V_{1} \models\left[\text { move }^{*}\right](\text { nowinE } \rightarrow(\neg \Phi \wedge(\text { turnE } \rightarrow[\text { move }] \text { nowinE }) \wedge \\
& (\neg \text { turn } E \rightarrow\langle\text { move〉nowinE })))
\end{aligned}
$$

Conclusions

- DL-PA = PDL with concrete programs
- full DL-PA: EXPTIME complete
- star-free DL-PA: PSPACE complete
- conjecture: limitation of quantifier alternation \Rightarrow complexity classes $\Sigma_{2}^{p}, \square_{2}^{p}$, etc.

