The dynamic logic of propositional assignments

Andreas Herzig University of Toulouse, CNRS, IRIT, France

joint work with Philippe Balbiani (Toulouse) and Nicolas Troquard (Trento)

February 2013

Overview

PDL: abstract actions only

Propositional dynamic logic "abstracts away from the nature of the domain of computation and studies the pure interaction between programs and propositions" [Harel et al. 2000]

concrete programs: propositional assignments
 p←φ = "*p* is assigned the truth value of φ"

Outline

The logic of propositional assignments

DL-PA: language

• $Prp = \{p, q, \ldots\} =$ set of propositional variables

• programs:

- *p*←φ = "p is assigned the truth value of φ"
 - N.B.: don't confuse with assignments of object variables x ← t of first-order dynamic logic
- complex assignment programs: $p \leftarrow \top \cup p \leftarrow \bot, \ldots$
- formulas: ...

DL-PA: language, ctd.

• BNF for assignment programs π and formulas φ :

$$\begin{aligned} \pi & ::= \quad p \leftarrow \varphi \mid \pi; \pi \mid \pi \cup \pi \mid \pi^* \mid \varphi? \\ \varphi & ::= \quad p \mid \top \mid \bot \mid \neg \varphi \mid \varphi \lor \varphi \mid [\pi] \varphi \end{aligned}$$

• skip
$$\stackrel{\text{def}}{=} \top$$
?
• if φ then π_1 else $\pi_2 \stackrel{\text{def}}{=} \dots$
• while φ do $\pi \stackrel{\text{def}}{=} \dots$

Models

- valuations $V \subseteq \Pr p$
- interpretation of a formula = set of valuations
 - $\|\varphi\| = \{V_1, V_2, \ldots\}$
- interpretation of a modality = relation on the set of valuations
 - $\|\pi\| = \{\langle V_1, V_1' \rangle, \langle V_2, V_2' \rangle, \ldots\}$

Interpretation of formulas

 $\begin{aligned} \|\top\| &= 2^{\Pr p} \\ \|\bot\| &= \emptyset \\ \|\rho\| &= \{V : p \in V\} \\ \|\neg \varphi\| &= \dots \\ \|\varphi \lor \psi\| &= \dots \\ \|[\pi]\varphi\| &= \{V : \text{ for every } V' \text{ s.th. } V \|\pi\|V', V' \in \|\varphi\| \} \end{aligned}$

Interpretation of assignment programs

$$\|p \leftarrow \varphi\| = \left\{ \langle V, V' \rangle : V' = V \cup \{p\} \text{ if } V \in \|\varphi\|, \text{ and} \\ V' = V \setminus \{p\} \text{ if } V \notin \|\varphi\| \right\}$$
$$\|\pi_1; \pi_2\| = \|\pi_1\| \circ \|\pi_2\|$$
$$\|\pi_1 \cup \pi_2\| = \|\pi_1\| \cup \|\pi_2\|$$

$$egin{array}{l} \|\pi^*\| = ig(\|\pi\|ig)^* \ \|arphi^*\| = \{ig\langle V, V
angle \ : \ V \in \|arphi\|\} \end{array}$$

Example: $\|p \leftarrow \varphi\| = \|(\varphi?; p \leftarrow \top) \cup (\neg \varphi?; p \leftarrow \bot)\|$

Example: $\|\langle p \leftarrow \varphi \rangle \top\| = 2^{\Pr p}$

Satisfiability and validity

φ satisfiable	iff	$\ \varphi\ \neq \ \bot\ $
arphi is valid	iff	$\ \varphi\ = \ \top\ $

Complexity of DL-PA satisfiability: overview

NP complete

PSPACE complete EXPTIME complete undecidable if no complex programs (apply reduction axioms) if star-free (no π^*) [Herzig et al. IJCAI 2011] for full language (v.i.) if moreover abstract actions à la PDL [Tiomkin and Makowsky 1985]

Outline

DL-PA: decidability

key step: eliminate the Kleene star

- choose some π^* such that π is star-free
- 2 transform π into

$$(\varphi_1?;\alpha_1) \cup \cdots \cup (\varphi_n?;\alpha_n)$$

where every α_k is a sequence of assignments

Imake all the assignment sequences α_k assign exactly the same variables:

 $(\varphi_1?; \alpha_1) \cup \cdots \cup (\varphi_n?; \alpha_n)$ and $\Pr_{\alpha_1} = \ldots = \Pr_{\alpha_n}$

• replace π^* by

$$((\varphi_1?;\alpha_1) \cup \cdots \cup (\varphi_n?;\alpha_n))^{\leq n}$$

(uses that $Prp_{\alpha_k} = Prp_{\alpha_l}$ implies α_k ; $\alpha_l = \alpha_l$)

DL-PA: complexity of the star-free fragment

Theorem ([Herzig et al. IJCAI 2011])

Satisfiability checking is PSPACE-complete for the star-free fragment of DL-PA.

- hardness: encode QBF
- membership:

 - Satisfiability is in NPSPACE: guess valuation V; check $V \in ||\varphi||$
 - NPSPACE = PSPACE [Savitch]

Full DL-PA: complexity

Theorem

Both model checking (MC) and satisfiability checking (SAT) are EXPTIME-complete.

- membership of SAT: translate into PDL
- hardness of MC: encode PEEK-G₅
 - alternative: encode corridor tiling problem, cf. PDL [Harel et al. 2000]
- polynomial transformation from MC into SAT:

 $V \in ||\varphi|| \quad \text{iff } \varphi \land (\bigwedge_{p \in V \cap \Pr_{\varphi}} p) \land (\bigwedge_{p \notin V \cap \Pr_{\varphi}} \neg p) \text{ satisfiable}$

Full DL-PA: proof of EXPTIME hardness

- PEEK-G₅(Prp_E, Prp_A, Φ , V_0 , τ):
 - propositional variables of Prp partitioned among Abelard and Eloïse
 - Prp_A: propositional variables of Abelard
 - Prp_E: propositional variables of Eloïse
 - $\operatorname{Prp}_{A} \cup \operatorname{Prp}_{E} = \operatorname{Prp}, \operatorname{Prp}_{A} \cap \operatorname{Prp}_{E} = \emptyset$
 - V₀ is the initial valuation
 - A and E alternatively choose one of their variables and change its truth value
 - player $\tau \in \{A, E\}$ begins
 - Eloïse wins if Φ is true
 - "does Eloïse have a winning strategy?"
 - EXPTIME complete [Stockmeyer and Chandra 79]

Full DL-PA: proof of EXPTIME hardness, ctd.

• define valuation
$$V_1$$
:
 $V_1 = \begin{cases} V_0 \cup \{\text{nowinE}, \text{turnE}\} & \text{if } \tau = E \\ V_0 \cup \{\text{nowinE}\} & \text{if } \tau = A \end{cases}$

• define a 'move' program:

moveE = turnE?;
$$\bigcup_{x \in \Pr p_E} (x \leftarrow \bot \cup x \leftarrow \top); turnE \leftarrow \bot$$

moveA = \neg turnE?;
$$\bigcup_{y \in \Pr p_A} (y \leftarrow \bot \cup y \leftarrow \top); turnE \leftarrow \top$$

 $move = (moveE \cup moveA); ((\Phi?; nowinE \leftarrow \bot) \cup \neg \Phi?)$

_emma

Eloïse has no winning strategy iff

$$V_{1} \models [move^{*}] (nowinE \rightarrow (\neg \Phi \land (turnE \rightarrow [move]nowinE) \land (\neg turnE \rightarrow \langle move \rangle nowinE))$$

Full DL-PA: proof of EXPTIME hardness, ctd.

• define valuation
$$V_1$$
:
 $V_1 = \begin{cases} V_0 \cup \{\text{nowinE}, \text{turnE}\} & \text{if } \tau = E \\ V_0 \cup \{\text{nowinE}\} & \text{if } \tau = A \end{cases}$

• define a 'move' program:

moveE = turnE?;
$$\bigcup_{x \in \Pr p_E} (x \leftarrow \bot \cup x \leftarrow \top); turnE \leftarrow \bot$$

moveA = ¬turnE?;
$$\bigcup_{y \in \Pr p_A} (y \leftarrow \bot \cup y \leftarrow \top); turnE \leftarrow \top$$

 $move = (moveE \cup moveA); ((\Phi?; nowinE \leftarrow \bot) \cup \neg \Phi?)$

Lemma

Eloïse has no winning strategy iff

$$V_{1} \models [move^{*}] (nowinE \rightarrow (\neg \Phi \land (turnE \rightarrow [move]nowinE) \land (\neg turnE \rightarrow \langle move \rangle nowinE))$$

Conclusions

• DL-PA = PDL with concrete programs

- full DL-PA: EXPTIME complete
- star-free DL-PA: PSPACE complete
 - conjecture: limitation of quantifier alternation \Rightarrow complexity classes Σ_2^p , Π_2^p , etc.