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Overview

PDL: abstract actions only
Propositional dynamic logic “abstracts away from the
nature of the domain of computation and studies the
pure interaction between programs and
propositions” [Harel et al. 2000]

concrete programs: propositional assignments
p←ϕ = “p is assigned the truth value of ϕ”
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DL-PA: language

Prp = {p, q, . . .} = set of propositional variables

programs:
p←ϕ = “p is assigned the truth value of ϕ”

N.B.: don’t confuse with assignments of object variables x←t of
first-order dynamic logic

complex assignment programs: p←>∪ p←⊥, . . .

formulas: . . .
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DL-PA: language, ctd.

BNF for assignment programs π and formulas ϕ:

π F p←ϕ | π; π | π ∪ π | π∗ | ϕ?
ϕ F p | > | ⊥ | ¬ϕ | ϕ∨ϕ | [π]ϕ

just as in PDL:

skip
def
= >?

if ϕ then π1 else π2
def
= . . .

while ϕ do π
def
= . . .
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Models

valuations V ⊆ Prp

interpretation of a formula = set of valuations
||ϕ|| = {V1,V2, . . .}

interpretation of a modality = relation on the set of valuations
||π|| = {〈V1,V ′1〉, 〈V2,V ′2〉, . . .}
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Interpretation of formulas

||>|| = 2Prp

||⊥|| = ∅

||p|| = {V : p ∈ V}
||¬ϕ|| = . . .
||ϕ∨ψ|| = . . .
||[π]ϕ|| = {V : for every V ′ s.th. V ||π||V ′, V ′ ∈ ||ϕ||}
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Interpretation of assignment programs

||p←ϕ|| =
{
〈V ,V ′〉 : V ′ = V ∪ {p} if V ∈ ||ϕ||, and

=
{
〈V ,V ′〉 : iV ′ = V \ {p} if V < ||ϕ||

}
||π1; π2|| = ||π1|| ◦ ||π2||

||π1 ∪ π2|| = ||π1|| ∪ ||π2||

||π∗|| = (||π||)∗

||ϕ?|| = { 〈V ,V〉 : V ∈ ||ϕ|| }

Example:
||p←ϕ|| = ||(ϕ?; p←>) ∪ (¬ϕ?; p←⊥)||

Example:
||〈p←ϕ〉>|| = 2Prp
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Satisfiability and validity

ϕ satisfiable iff ||ϕ|| , ||⊥||

ϕ is valid iff ||ϕ|| = ||>||
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Complexity of DL-PA satisfiability: overview

NP complete if no complex programs
(apply reduction axioms)

PSPACE complete if star-free (no π∗) [Herzig et al. IJCAI 2011]
EXPTIME complete for full language (v.i.)
undecidable if moreover abstract actions à la PDL

[Tiomkin and Makowsky 1985]

10 / 17



Introduction DL-PA Complexity of satisfiability

Outline

1 The logic of propositional assignments

2 Complexity of satisfiability

11 / 17



Introduction DL-PA Complexity of satisfiability

DL-PA: decidability

key step: eliminate the Kleene star
1 choose some π∗ such that π is star-free
2 transform π into

(ϕ1?;α1) ∪ · · · ∪ (ϕn?;αn)

where every αk is a sequence of assignments
3 make all the assignment sequences αk assign exactly the

same variables:

(ϕ1?;α1) ∪ · · · ∪ (ϕn?;αn) and Prpα1 = . . . = Prpαn

4 replace π∗ by

((ϕ1?;α1) ∪ · · · ∪ (ϕn?;αn))≤n

(uses that Prpαk
= Prpαl

implies αk ;αl = αl)
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DL-PA: complexity of the star-free fragment

Theorem ([Herzig et al. IJCAI 2011])

Satisfiability checking is PSPACE-complete for the star-free
fragment of DL-PA.

hardness: encode QBF
membership:

1 satisfiability is in NPSPACE: guess valuation V ; check V ∈ ||ϕ||
2 NPSPACE = PSPACE [Savitch]
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Full DL-PA: complexity

Theorem
Both model checking (MC) and satisfiability checking (SAT) are
EXPTIME-complete.

membership of SAT: translate into PDL
hardness of MC: encode PEEK-G5

alternative: encode corridor tiling problem, cf. PDL
[Harel et al. 2000]

polynomial transformation from MC into SAT:
V ∈ ||ϕ|| iff ϕ ∧ (

∧
p∈V∩Prpϕ p) ∧ (

∧
p<V∩Prpϕ ¬p) satisfiable
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Full DL-PA: proof of EXPTIME hardness

1 PEEK-G5(PrpE , PrpA ,Φ,V0, τ):
propositional variables of Prp partitioned among Abelard and
Eloïse

PrpA : propositional variables of Abelard
PrpE : propositional variables of Eloïse
PrpA ∪ PrpE = Prp, PrpA ∩ PrpE = ∅

V0 is the initial valuation
A and E alternatively choose one of their variables and
change its truth value
player τ ∈ {A ,E} begins
Eloïse wins if Φ is true
“does Eloïse have a winning strategy?”

EXPTIME complete [Stockmeyer and Chandra 79]
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Full DL-PA: proof of EXPTIME hardness, ctd.
define valuation V1:

V1 =

V0 ∪ {nowinE, turnE} if τ = E

V0 ∪ {nowinE} if τ = A
define a ‘move’ program:

moveE = turnE?;
⋃

x∈PrpE

(x←⊥∪ x←>); turnE←⊥

moveA = ¬turnE?;
⋃

y∈PrpA

(y←⊥∪ y←>); turnE←>

move = (moveE ∪moveA) ; ((Φ?; nowinE←⊥) ∪ ¬Φ?)

Lemma

Eloïse has no winning strategy iff

V1 |= [move∗]
(
nowinE→ (¬Φ∧(turnE→ [move]nowinE) ∧

(¬turnE→ 〈move〉nowinE))
)
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Conclusions

DL-PA = PDL with concrete programs
full DL-PA: EXPTIME complete
star-free DL-PA: PSPACE complete

conjecture: limitation of quantifier alternation⇒ complexity
classes Σp

2 , Πp
2 , etc.
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