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Bunched Implication logic (BI)

• Introduced by Pym 99, 02

– intuitionistic logic connectives: ∧, ∨, → . . .

– multiplicative connectives of MILL: ∗, −∗, I

– sound and complete bunched sequent calculus, with cut

elimination

• Kripke semantics (Pym&O’Hearn 99, Galmiche&Mery&Pym 02)

– partially ordered partial commutative monoids (M, ◦,6)

– intuitionistic Kripke semantics for additives

– relevant Kripke semantics for multiplicatives

– sound and complete Kripke semantics for BI
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BI Logic continued

• In BI, decomposition interpreted by a ◦ b 6 m:

– resource monoids (partial, ordered)

– intuitionistic additives and relevant multiplicatives

• BI has proof systems:

– cut-free bunched sequent calculus (Pym 99)

– resource tableaux (Galmiche&Mery&Pym 05)

– inverse method (Donnelly&Gibson et al. 04)

• Additives are intuitionistic in BI, mostly Boolean in Separation

Logic
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Boolean BI (BBI)

• Loosely defined by Pym as BI + {¬¬A→A}

– no known pure sequent based proof system

– Kripke semantics by ND-monoids (Larchey&Galmiche 06)

– Display Logic based cut-free proof-system (Brotherston 09)

• Other definition (logical core of Separation and Spatial logics)

– additive implication → Kripke interpreted pointwise

– based on partial (commutative) monoids (M, ◦, e)

– has a sound and complete (labelled tableaux) proof-system

• two different logics, both undecidable (Larchey&Galmiche 10)
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Words and constraints based models for BBI

• Resources as Words of L? = lists of letters

• Constraints = (ordered) pairs of words: m−·····− n with m,n ∈ L?

• Partial monoidal equivalence ∼ (PME)

ε−·····− ε
〈ε〉

x−·····− y

y −·····− x
〈s〉

ky −·····− ky x−·····− y

kx−·····− ky
〈c〉

xy −·····− xy

xy −·····− yx
〈com〉

xy −·····− xy

x−·····− x
〈d〉

x−·····− y y −·····− z

x−·····− z
〈t〉

• PME = set of constraints closed under these rules

• given C, the closure is C = ∼C ; compactness prop.
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Constraints based Kripke models for BBI

• Start with a PME ∼

• The alphabet A∼ = {l ∈ L | l ∼ l}

• The language L∼ = {m ∈ L? | m ∼ m}

• A monotonic valuation L∼ −→P(Var)

m ∼ n⇒ m  V ⇒ n  V

• Usual (pointwise) Kripke interpretation for ∧, ∨, →, ¬, ⊥ and >

m ∼ I iff ε ∼ m

m ∼ A ∗B iff ∃x, y xy R m ∧ x ∼ A ∧ y ∼ B

m ∼ A−∗B iff ∀x, y (xm R y ∧ x ∼ A)⇒ y ∼ B
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Labelled tableaux for BBI

• Statements (TA : m), assertions (ass : m−·····− n) and req : m ∼ n

TI : m

ass : ε−·····−m

TA ∗B : m

ass : ab−·····−m

TA : a

TB : b

FA ∗B : m

req : xy ∼ m
aaa

!!!

FA : x FB : y

TA−∗B : m

req : xm ∼ y
aaa

!!!

FA : x TB : y

FA−∗B : m

ass : am−·····− b

TA : a

FB : b
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Formalization of tableaux rules

• Statements TA : m in X and assertions m−·····− n in C

• Tableau branch = CSS (X , C) (SF : m ∈ X ⇒ m ∼C m)

• Rules of the form
cond(X , C)

(X1, C1) | · · · | (Xk, Ck)
, fireable

• An assertion rule (params: A,B ∈ Form, a, b ∈ L,m ∈ L?)

TA ∗B : m

ass : ab−·····−m

TA : a

TB : b

TA ∗B : m ∈ X and a 6= b ∈ L\AC
({TA : a,TB : b}, {ab−·····−m})

〈T∗〉
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• A requirement rule (params: A,B ∈ Form, x, y,m ∈ L?)

FA ∗B : m

req : xy ∼ m
aaa

!!!

FA : x FB : y

FA ∗B : m ∈ X and xy ∼C m
({FA : x}, ∅) | ({FB : y}, ∅)

〈F∗〉

• Closed tableau branch (X , C)

TA : m ∈ X and FA : n ∈ X and m ∼C n for some A,m, n

9



'

&

$

%

Oracles

• Oracle = set of CSS which is 4-downward closed, of finite

character, open and saturated

• P is 4-downward closed if (X , C) ∈ P holds whenever both

(X , C) 4 (X ′, C′) and (X ′, C′) ∈ P hold

• P is of finite character if (X , C) ∈ P holds whenever (Xf , Cf ) ∈ P
holds for every (Xf , Cf ) 4f (X , C)

• P is open if (X , C) is open for every (X , C) ∈ P

• P is saturated if for any (X , C) ∈ P and any fireable instance on

(X , C), at least one of its expansions (X ∪Xi, C ∪ Ci) belongs to P

• not having a closed tableau = oracle P (excluded middle)
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Fair strategy + Oracles = Hintikka CSS

• fair strategy = infinite enumeration of statements SiFi : mi

• start (X0, C0), notation Ci = C0 ∪ {x1 −·····− y1, . . . , xi −·····− yi}

• (Xi ∪ {SiFi : mi}, Ci) 6∈ P ⇒ Xi+1 = Xi and xi+1 −·····− yi+1 = ε−·····− ε

• (Xi ∪ {SiFi : mi}, Ci) ∈ P ⇒ Xi+1 = Xi ∪ {SiFi : mi} ∪ Xe

Si Fi Xe xi+1−·····− yi+1

T I ∅ ε−·····−mi

T A ∗B {TA : a,TB : b} ab−·····−mi

F A−∗B {TA : a,FB : b} ami−·····− b

otherwise ∅ ε−·····− ε

with

 a = cn0+2i

b = cn0+2i+1
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PS generated constraints, strong completeness

• Basic extension of a PME ∼
1. ab−·····−m with m ∼ m and a 6= b ∈ L\A∼;

2. am−·····− b with m ∼ m and a 6= b ∈ L\A∼;

3. ε−·····−m with m ∼ m.

• Simple PME = infinite sequence of basic extensions

• The PS generated PME is simple (Hintikka)

• Simple PME = complete subclass of models
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