Formal completeness for Boolean BI

Dominique Larchey-Wendling
TYPES team

LORIA - CNRS
Nancy, France

ANR-Dynres, Nancy, France

Bunched Implication logic (BI)

- Introduced by Pym 99, 02
- intuitionistic logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative connectives of MILL: $*, \rightarrow$, I
- sound and complete bunched sequent calculus, with cut elimination
- Kripke semantics (Pym\&O’Hearn 99, Galmiche\&Mery\&Pym 02)
- partially ordered partial commutative monoids ($\mathcal{M}, \circ, \leqslant$)
- intuitionistic Kripke semantics for additives
- relevant Kripke semantics for multiplicatives
- sound and complete Kripke semantics for BI

BI Logic continued

- In BI , decomposition interpreted by $a \circ b \leqslant m$:
- resource monoids (partial, ordered)
- intuitionistic additives and relevant multiplicatives
- BI has proof systems:
- cut-free bunched sequent calculus (Pym 99)
- resource tableaux (Galmiche\&Mery\&Pym 05)
- inverse method (Donnelly\&Gibson et al. 04)
- Additives are intuitionistic in BI, mostly Boolean in Separation Logic

Boolean BI (BBI)

- Loosely defined by Pym as $\mathrm{BI}+\{\neg \neg A \rightarrow A\}$
- no known pure sequent based proof system
- Kripke semantics by ND-monoids (Larchey\&Galmiche 06)
- Display Logic based cut-free proof-system (Brotherston 09)
- Other definition (logical core of Separation and Spatial logics)
- additive implication \rightarrow Kripke interpreted pointwise
- based on partial (commutative) monoids ($\mathcal{M}, \circ, \mathrm{e}$)
- has a sound and complete (labelled tableaux) proof-system
- two different logics, both undecidable (Larchey\&Galmiche 10)

Words and constraints based models for BBI

- Resources as Words of $L^{\star}=$ lists of letters
- Constraints $=($ ordered $)$ pairs of words: $m \rightarrow n$ with $m, n \in L^{\star}$
- Partial monoidal equivalence $\sim(\mathrm{PME})$

$$
\begin{array}{ccc}
-\overline{\epsilon-\epsilon}\langle\epsilon\rangle & \frac{x-y}{y-x}\langle s\rangle & \frac{k y-k y \quad x-y}{k x-k y}\langle c\rangle \\
\frac{x y-x y}{x y-y x}\langle c o m\rangle & \frac{x y-x y}{x-x}\langle d\rangle & \frac{x-y \quad y-z}{x-z}\langle t\rangle
\end{array}
$$

- $\mathrm{PME}=$ set of constraints closed under these rules
- given \mathcal{C}, the closure is $\overline{\mathcal{C}}=\sim_{\mathcal{C}}$; compactness prop.

Constraints based Kripke models for BBI

- Start with a PME ~
- The alphabet $A_{\sim}=\{l \in L \mid l \sim l\}$
- The language $L_{\sim}=\left\{m \in L^{\star} \mid m \sim m\right\}$
- A monotonic valuation $L_{\sim} \longrightarrow \mathcal{P}($ Var $)$

$$
m \sim n \Rightarrow m \Vdash V \Rightarrow n \Vdash V
$$

- Usual (pointwise) Kripke interpretation for $\wedge, \vee, \rightarrow, \neg, \perp$ and \top

$$
\begin{array}{ll}
m \Vdash_{\sim} \quad \text { I } & \text { iff } \quad \epsilon \sim m \\
m \Vdash_{\sim} A * B & \text { iff } \quad \exists x, y x y R m \wedge x \Vdash_{\sim} A \wedge y \Vdash_{\sim} B \\
m \Vdash_{\sim} A * B & \text { iff } \quad \forall x, y\left(x m R y \wedge x \Vdash_{\sim} A\right) \Rightarrow y \Vdash_{\sim} B
\end{array}
$$

Labelled tableaux for BBI

- Statements ($\mathbb{T} A: m$) , assertions (ass : $m-n$) and req : $m \sim n$

$\begin{gathered} \mathbb{T} \mathrm{l}: m \\ \mid \\ \text { ass }: \\ \hline-m \end{gathered}$	$\begin{gathered} \mathbb{T} A * B: m \\ \mid \\ \text { ass }: a b-m \\ \mathbb{T} A: a \\ \mathbb{T} B: b \end{gathered}$	
		$\begin{gathered} \mathbb{F} A \rightarrow B: m \\ \text { ass }: a m-b \\ \mathbb{T} A: a \\ \mathbb{F} B: b \end{gathered}$

Formalization of tableaux rules

- Statements $\mathbb{T} A: m$ in \mathcal{X} and assertions $m \rightarrow n$ in \mathcal{C}
- Tableau branch $=\operatorname{CSS}(\mathcal{X}, \mathcal{C})\left(\mathbb{S} F: m \in \mathcal{X} \Rightarrow m \sim_{\mathcal{C}} m\right)$
- Rules of the form $\frac{\operatorname{cond}(\mathcal{X}, \mathcal{C})}{\left(\mathcal{X}_{1}, \mathcal{C}_{1}\right)|\cdots|\left(\mathcal{X}_{k}, \mathcal{C}_{k}\right)}$, fireable
- An assertion rule (params: $A, B \in$ Form, $a, b \in L, m \in L^{\star}$)
$\mathbb{T} A * B: m$
\mid
ass $: a b-m$
$\mathbb{T} A: a$
$\mathbb{T} B: b$
$\mathbb{T} A * B: m \in \mathcal{X}$ and $a \neq b \in L \backslash A_{\mathcal{C}}$ $(\{\mathbb{T} A: a, \mathbb{T} B: b\},\{a b-m\})$
- A requirement rule (params: $A, B \in$ Form, $x, y, m \in L^{\star}$)

$\mathbb{F} A * B: m$
\mid
$\operatorname{req}: x y \sim m$
$\mathbb{F} A: x \quad \mathbb{F} B: y$

$(\{\mathbb{F} A: x\}, \emptyset) \mid(\{\mathbb{F} B: y\}, \emptyset)$$|\mathbb{F} *\rangle$

- Closed tableau branch $(\mathcal{X}, \mathcal{C})$
$\mathbb{T} A: m \in \mathcal{X}$ and $\mathbb{F} A: n \in \mathcal{X}$ and $m \sim_{\mathcal{C}} n$ for some A, m, n

Oracles

- Oracle $=$ set of CSS which is \preccurlyeq-downward closed, of finite character, open and saturated
- \mathcal{P} is \preccurlyeq-downward closed if $(\mathcal{X}, \mathcal{C}) \in \mathcal{P}$ holds whenever both $(\mathcal{X}, \mathcal{C}) \preccurlyeq\left(\mathcal{X}^{\prime}, \mathcal{C}^{\prime}\right)$ and $\left(\mathcal{X}^{\prime}, \mathcal{C}^{\prime}\right) \in \mathcal{P}$ hold
- \mathcal{P} is of finite character if $(\mathcal{X}, \mathcal{C}) \in \mathcal{P}$ holds whenever $\left(\mathcal{X}_{f}, \mathcal{C}_{f}\right) \in \mathcal{P}$ holds for every $\left(\mathcal{X}_{f}, \mathcal{C}_{f}\right) \preccurlyeq_{f}(\mathcal{X}, \mathcal{C})$
- \mathcal{P} is open if $(\mathcal{X}, \mathcal{C})$ is open for every $(\mathcal{X}, \mathcal{C}) \in \mathcal{P}$
- \mathcal{P} is saturated if for any $(\mathcal{X}, \mathcal{C}) \in \mathcal{P}$ and any fireable instance on $(\mathcal{X}, \mathcal{C})$, at least one of its expansions $\left(\mathcal{X} \cup \mathcal{X}_{i}, \mathcal{C} \cup \mathcal{C}_{i}\right)$ belongs to \mathcal{P}
- not having a closed tableau $=$ oracle \mathcal{P} (excluded middle)

Fair strategy + Oracles $=$ Hintikka CSS

- fair strategy $=$ infinite enumeration of statements $\mathbb{S}_{i} F_{i}: m_{i}$
- $\operatorname{start}\left(\mathcal{X}_{0}, \mathcal{C}_{0}\right)$, notation $\mathcal{C}_{i}=\mathcal{C}_{0} \cup\left\{x_{1}-y_{1}, \ldots, x_{i}-y_{i}\right\}$
- $\left(\mathcal{X}_{i} \cup\left\{\mathbb{S}_{i} F_{i}: m_{i}\right\}, \mathcal{C}_{i}\right) \notin \mathcal{P} \Rightarrow \mathcal{X}_{i+1}=\mathcal{X}_{i}$ and $x_{i+1}-y_{i+1}=\epsilon-\epsilon$
- $\left(\mathcal{X}_{i} \cup\left\{\mathbb{S}_{i} F_{i}: m_{i}\right\}, \mathcal{C}_{i}\right) \in \mathcal{P} \Rightarrow \mathcal{X}_{i+1}=\mathcal{X}_{i} \cup\left\{\mathbb{S}_{i} F_{i}: m_{i}\right\} \cup \mathcal{X}_{e}$

\mathbb{S}_{i}	F_{i}	\mathcal{X}_{e}	$x_{i+1}-y_{i+1}$
\mathbb{T}	I	\emptyset	$\epsilon-m_{i}$
\mathbb{T}	$A * B$	$\{\mathbb{T} A: a, \mathbb{T} B: b\}$	$a b-m_{i}$
\mathbb{F}	$A \rightarrow B$	$\{\mathbb{T} A: a, \mathbb{F} B: b\}$	$a m_{i}-b$
otherwise		\emptyset	$\epsilon-\epsilon$

with $\left\{\begin{array}{l}a=c_{n_{0}+2 i} \\ b=c_{n_{0}+2 i+1}\end{array}\right.$

PS generated constraints, strong completeness

- Basic extension of a PME ~

1. $a b-m$ with $m \sim m$ and $a \neq b \in L \backslash A_{\sim}$;
2. $a m-b$ with $m \sim m$ and $a \neq b \in L \backslash A_{\sim}$;
3. $\epsilon \rightarrow m$ with $m \sim m$.

- Simple PME = infinite sequence of basic extensions
- The PS generated PME is simple (Hintikka)
- Simple PME $=$ complete subclass of models

