
A modal extension of BBI for resource transformation (work in progress)

A modal extension of BBI for resource
transformation

(work in progress)

J.R. Courtault - D. Galmiche

ANR DynRes Meeting - Nancy

February 2013

Introduction - resource logics

Resources

Resource is a key notion in computer science:

- Memory

- Processes

- Messages

Different concerns about resources:

- Location

- Ownership

- Access to

- Consumption of

I Study of resources and related notions through logics

Introduction - resource logics

Bunched Implications (BI) logic (O’Hearn and Pym 1999, Pym
2002)

BI =

{
∧,∨,→,>,⊥ (additives)
∗,−∗, I (multiplicatives)

BI (intuitionistic additives) , BBI (classical additives)

Sequents with bunches (trees of formulae where internal nodes

are ”,” or ”;”):
Γ, φ ` ψ

Γ ` φ−∗ ψ
Γ;φ ` ψ

Γ ` φ→ ψ

Bunches can be viewed as areas of a model:

A, (B; C),A A BC A

Resources are areas and propositional symbols are properties of
resources (areas)

BI and BBI focus on separation (,) / sharing (;)

Introduction - resource logics

Separation logics

BI and BBI logical kernels of separation logics

Some separation logics:

- PL: Pointer (Separation) Logic with (x 7→ a, b)
(O’Hearn et al. 2001)

- BI-Loc: Separation Logic with locations (Biri-Galmiche 2007)

- MBI: Separation Logic with modalities for processes
(R,E

a−→ R ′,E ′) (Pym-Toft 2006)

- DBI: Separation Logic with modalities for dynamic properties of
resources (Courtault-Galmiche 2013)

I Study of dynamics in resource/separation logics

Introduction - resource logics

Dynamics in resource logics

What are systems with dynamic resources?

- Systems that transform resources (producers / consumers)

- Systems that modify resource properties (value of cells of a
cellular automata): no resource production/consumption

Resource logics and dynamics

- BI: Properties on resources = no dynamics

- MBI (R,E
a−→ R ′,E ′): Dynamics is resource transformation

- DBI (BI + ♦, �): Dynamic properties of resources

Introduction - MBI logic

MBI and SCRP (Pym-Tofte 2006)

SCRPr: Synchronous Calculus of Resources and Processes

- Processes: E ::= 0 | X | a : E | E + E | E × E | νR.E | fixiX .E

- SCRPr transitions (some rules):

(µ(a, R) ↓)
R, a : E

a−→ µ(a,R),E
R,E

a−→ R ′,E ′ S ,F
b−→ S ′,F ′

(R ◦ S ↓)

R ◦ S ,E × F
a#b−−→ R ′ ◦ S ′,E ′ × F ′

MBI: BBI + modalities (〈a〉, [a], 〈a〉ν , [a]ν)

Forcing relation:

- R,E � φ ∗ ψ iff ∃R1,R2,E1,E2 · R = R1 ◦ R2 and E ∼ E1 × E2

and R1,E1 � φ and R2,E2 � ψ

- R,E � 〈a〉φ iff ∃R ′,E ′ · R,E a−→ R ′,E ′ and R ′,E ′ � φ

- R,E � 〈a〉νφ iff ∃T ,R ′,E ′ · R ◦ T ,E
a−→ R ′,E ′ and R ′,E ′ � φ

Introduction - MBI logic
An example: mutual exclusion

Processes:

E
def
= nc : E + critical : Ecritical

Ecritical
def
= critical : Ecritical + critical : E

Minimum resources required for the action: ρ(nc) = {e} and
ρ(critical) = {R}

The µ function: µ(a,R) = R for any a action

The action critical#critical is never performed:
R,E × E � [critical#critical]⊥

Problems:
- Only a calculus with bunches and without completeness

- R,E × E � [critical#critical]⊥ does not mean that in any
reachable state, couple (resource, process), it is impossible to
execute two concurrent critical actions (need of ♦ and �)

Introduction - DBI logic

DBI logic

Dynamic modal BI

- BI with modalities ♦ and �

- Dynamic resource properties

- A calculus that is sound and complete

DBI models:

- resources (resource monoid)

- states and a state relation

Forcing relation:

- r , s � φ ∗ ψ iff ∃r ′, r ′′ · r ′ • r ′′ v r and r ′, s � φ and r ′′, s � ψ
(remark: ∗ separates only the resource r)

- r , s � ♦φ iff ∃s ′ · s � s ′ and r , s ′ � φ

Introduction - DBI logic

An example: properties on states of webservices

A set of composed webservices W = {W0,W1,W2,W3, ...}

A model:

W0 :

W1 :
.........

t0

id

id

t1

ru

id

t2

ru

ru

t3

ru

ru

t4

id

ru

t5

id

id

(id: idle)

(ru: running)

An interpretation J.K:

- JPidleK = {(S , ti) | ∃Wi ∈ S ·Wi is idle at time ti}

- JPrunning K = {(S , ti) | ∃Wi ∈ S ·Wi is running at time ti}

where S ⊆W is a set of webservices.

For example: S , t � Pidle if there is at least a webservice in S
that is idle at time t

Introduction - DBI logic
An example: properties on states of webservices

W0 :

W1 :
.........

t0

id

id

t1

ru

id

t2

ru

ru

t3

ru

ru

t4

id

ru

t5

id

id

(id: idle)

(ru: running)

Properties that can be expressed:

- {W0,W1}, t1 � Pidle

- {W0,W1}, t1 � Pidle ∧ Pidle but {W0,W1}, t1 6� Pidle ∗ Pidle

- {W0,W1}, t0 � Pidle ∗ Pidle

- {W0,W1}, t0 � (Pidle ∗ Pidle) ∧ ♦(Pidle ∗ Prunning)

Problem: resource transformation cannot be express in DBI
(it is not possible to model the messages that are produced /
exchanged by the webservices)

Introduction - results

Some results

DMBI logic

- captures resource transformation (≈ MBI)

- includes modalities ♦ and � (≈ DBI)

- Restriction to only one process (6≈ MBI)

Semantics: µ-dynamic resource monoids

Proof theory: a tableaux method that is sound and complete

Counter-model extraction

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Logic - Language

Language

DMBI = BBI + 〈a〉 [a] ♦ �:

φ ::= p | ⊥ | I | φ→ φ | φ ∗ φ | φ−∗ φ | 〈a〉φ | [a]φ | ♦φ | �φ

Syntactic sugar:

¬φ ≡ φ→ ⊥ > ≡ ¬⊥

φ ∨ ψ ≡ ¬φ→ ψ φ∧ψ ≡ ¬(φ→ ¬ψ)

[a]φ ≡ ¬〈a〉¬φ �φ ≡ ¬♦¬φ

DMBI Logic - Semantics

Semantics

Resource monoid: R = (R, •, e)

- R is a set of resources

- e ∈ R is the unit resource

- • : R × R → R such that, for any r1, r2, r3 ∈ R:

- Neutral element: r1 • e = e • r1 = r1

- Commutativity: r1 • r2 = r2 • r1

- Associativity: r1 • (r2 • r3) = (r1 • r2) • r3

Remark: • is total because a resource is viewed as a multiset of
atomic resources

DMBI Logic - Semantics

Semantics

Action monoid (non commutative): A = (Act,�, 1)

- Act is a set of actions

- 1 ∈ Act is the unit action

- � : Act × Act → Act such that, for any a1, a2, a3 ∈ Act:

- Neutral element: a1 � 1 = 1� a1 = a1

- Associativity: a1 � (a2 � a3) = (a1 � a2)� a3

Remark: actions are viewed as lists of atomic actions

DMBI Logic - Semantics

Semantics

A µ-dynamic resource monoid: M = (R,A, S , ||·〉〉, µ)

- S is a set of states

- ||·〉〉 ⊆ S × Act × S , such that:

- ||·〉〉-unit: s1 ||1〉〉 s1

- ||·〉〉-composition: if s1 ||a1〉〉 s2 and s2 ||a2〉〉 s3 then s1 ||a1 � a2〉〉 s3

- µ : Act × R ⇀ R, such that:

- µ-unit: µ(1, r) ↓ and µ(1, r) = r

- µ-composition: if µ(a1, r) ↓ and µ(a2, µ(a1, r)) ↓ then
µ(a1 � a2, r) ↓ and µ(a1 � a2, r) = µ(a2, µ(a1, r))

Denotations:

- r , s
a−→ r ′, s ′ iff µ(a, r) ↓, µ(a, r) = r ′ and s ||a〉〉 s ′

- r , s r ′, s ′ iff r , s
a0−→ r1, s1

a1−→ ...
an−1−−−→ rn, sn

an−→ r ′, s ′

DMBI Logic - Semantics
Semantics

µ-Model: K = (M, J·K, | · |,�K)

- r , s �K p iff (r , s) ∈ JpK

- r , s �K ⊥ never

- r , s �K I iff r = e

- r , s �K φ→ ψ iff r , s �K φ⇒ r , s �K ψ

- r , s �K φ ∗ ψ iff ∃r1, r2 ∈ R · r = r1 • r2 and r1, s �K φ and
r2, s �K ψ

- r , s �K φ−∗ ψ iff ∀r ′ ∈ R · r ′, s �K φ⇒ r • r ′, s �K ψ

- r , s �K 〈a〉φ iff ∃r ′ ∈ R · ∃s ′ ∈ S · r , s |a|−→ r ′, s ′ and r ′, s ′ �K φ

- r , s �K ♦φ iff ∃r ′ ∈ R · ∃s ′ ∈ S · r , s r ′, s ′ and r ′, s ′ �K φ

Validity: φ is valid iff r , s �K φ for any K, r and s

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Logic - Expressiveness
Example 1 - Petri nets

A Petri net P = (P,T , pre, post)

We show that P is a µ-DRM M = (R,A, S , ||·〉〉, µ):
- R = (R, •, e) where:

- R is the set of all multisets over P
- • is the addition over multisets
- e is the empty multiset

- A = (Act,�, 1) where:

- Act is the set of lists over T
- � is the concatenation of lists
- 1 is the empty list

- S = {s1}

- s1 ||t1 � ...� tn〉〉 s1 for any t1, ..., tn ∈ T

- µ(t1 � ...� tn,M) =

 ↑ if 6 ∃M1, ...,Mn ∈ R such that
M [t1〉M1 [t2〉 ... [tn〉Mn

Mn otherwise

DMBI Logic - Expressiveness
Example 1 - Petri nets

A µ-Model K = (M, J·K, | · |,�K):
- JpK = {([p] , s1)} for any p ∈ P

- |t| = t for any t ∈ T

a b c

d

t1 t2

Examples: [a] , s1 �K ♦(c ∗ d) and [a] , s1 �K 〈t1〉b

As opposed to PN semantics for BI (O’Hearn-Yang 1999):

- No monotonicity that encodes reachability: [a], s1 6�K b but
[a] �BI b and [a], s1 �K ♦b

- → and ¬ are classical: [b] 6�BI ¬a but [b] �K ¬a

Remark: this example uses only one state s1

DMBI Logic - Expressiveness

Example 2 - Concurrent process simulation

In DMBI there is only one process:
How models concurrent systems like webservices or protocol?

Idea: let A1 and A2 two automata. The automaton A1 × A2 is
the automaton that simulates the concurrent execution of A1

and A2.

Objective: let Mi = (R, •, e,A, Si , ||·〉〉i , µi) such that
1 6 i 6 n.
We want to construct M = (R, •, e,A, S , ||·〉〉, µ) such that:

ri , si
ai−→ r ′i , s

′
i for 1 6 i 6 n iff

r1 • ... • rn, s1/.../sn
a1#...#an−−−−−−→ r ′1 • ... • r ′n, s

′
1/.../s ′n

Question: what hypothesis on µ ?
(µ(a,R) ↓ ⇒ µ(a,R • S) ↓ and µ(a,R • S) = µ(a,R) • S)

DMBI Logic - Expressiveness
Some questions

MBI:
- R,E � I iff R = e and E ∼ 1

- R,E � φ ∗ ψ iff ∃R1,R2,E1,E3 · R = R1 ◦ R2 and E ∼ E1 × E2

and R1,E1 � φ and R2,E2 � ψ

DMBI:
- r , s �K I iff r = e

- r , s �K φ ∗ ψ iff ∃r1, r2 ∈ R · r = r1 • r2 and r1, s �K φ and
r2, s �K ψ

I What is the meaning of the formula I ?
”no resource” or ”no resource and unit process”

⇒ it should mean ”no resource”: I→ [a]⊥
(without resource the action a cannot be performed)

I What kind of decomposition with ∗ ?
decomposition of resources only or of resources and processes

⇒ case studies (protocols or Web services)

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Proof theory - Tableaux method

An extension of BI calculus (Galmiche-Méry-Pym 2005) based on
constrained set of statements (CSS in Larchey 2012)

Resource labels (R), action labels (Act) and state labels (S)

Resource constraints (=), µ-constraints (µ) and transition
constraints (||.〉〉)

Signed formulae: Sφ : (x , u)

Branches are denoted 〈F , C〉 where C is a set of resource,
transition and µ constraints

Assertions/requirements

DMBI Proof theory - Tableaux method

Labels

Resource labels (Lr):

X ::= 1r | ci | X ◦ X

where ci ∈ γr = {c1, c2, ...} and ◦ is a function on Lr that is
associative, commutative and 1r is its unit. x ◦ y is denoted xy .

Action labels (La):

X ::= 1a | ai | di | X � X

where ai ∈ SAct , di ∈ γa = {d1, d2, ...}, SAct ∩ γa = ∅ and � is
a function on La that is associative (not commutative) and 1a
is its unit. f � g is denoted fg .

State labels (Ls): Ls = {l1, l2, ...}.

DMBI Proof theory - Tableaux method

Constraints

Resource constraints:

- encode equality on resources.

- x ∼ y where x and y are resource labels.

µ-constraints:

- encode the function µ.

- x
f
� y where x and y are resource labels and f is an action

label.

Transition constraints:

- Encode the function ||·〉〉.

- u
f
� v where u and v are state labels and f is an action label.

DMBI Proof theory - Tableaux method

Constraint closure

Rules that product resource constraints:

〈1r 〉
1r ∼ 1r

x ∼ y
〈sr 〉y ∼ x

xy ∼ xy
〈dr 〉x ∼ x

x ∼ y y ∼ z
〈tr 〉x ∼ z

x ∼ x ′ y ∼ y ′
〈gr 〉

xy ∼ x ′y ′

x
f
� y x

f
� z

〈kr 〉y ∼ z
x

f
� y

〈ar1〉x ∼ x

DMBI Proof theory - Tableaux method

Constraint closure

Rules that product µ-constraints:

x ∼ x 〈1µ〉
x

1a
� x

x
f
� y y

g
� z

〈tµ〉
x

fg
� z

x
f
� y x ∼ x ′

〈kµ1〉
x ′ f
� y

x
f
� y y ∼ y ′

〈kµ2〉
x

f
� y ′

Rules that product transition constraints:

u
f
� v 〈1t1〉

u
1a
� u

u
f
� v 〈1t2〉

v
1a
� v

u
f
� v v

g
� w 〈tt〉

u
fg
� w

DMBI Tableaux method

Modal rules

Assertion rules:
Introduction of new labels and assertions (or constraints)

T〈f 〉φ : (x , u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci , li)}, {x
f
� ci , u

f
� li}〉

T♦φ : (x , u) ∈ F
〈T♦〉

〈{Tφ : (ci , li)}, {x
di
� ci , u

di
� li}〉

Requirement rules:
Conditions that must be verified in the closure of constraints

F〈f 〉φ : (x , u) ∈ F and x
f
� y ∈ C and u

f
� v ∈ C

〈F〈−〉〉
〈Fφ : (y , v), ∅〉

F♦φ : (x , u) ∈ F and x
f
� y ∈ C and u

f
� v ∈ C

〈F♦〉
〈{Fφ : (y , v)}, ∅〉

DMBI Tableaux method

Definition: closed branch

A CSS (branch) 〈F , C〉 is closed iff one of these conditions holds:

Tφ : (x , u) ∈ F , Fφ : (y , u) ∈ F and x ∼ y ∈ C
FI : (x , u) ∈ F and 1r ∼ x ∈ C
T⊥ : (x , u) ∈ F

Definition: µ-proof

A µ-proof for a formula φ is a µ-tableau for φ which is closed.

Theorem: soundness

If there exists a µ-proof for a formula φ then φ is valid.

Theorem: completeness

If a formula φ is valid then there is a µ-proof for φ.

DMBI Tableaux method - an example

I How to prove φ ≡ (I−∗ 〈a〉〈b〉P)→ ♦P ?

Step 1: Initialization

[F]

F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

DMBI Tableaux method - an example

[F]

F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

Fφ→ ψ : (x , u) ∈ F
〈F→〉

〈{Tφ : (x , u),Fψ : (x , u)}, ∅〉

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

FI : (1r , l1) T〈a〉〈b〉P : (c1, l1)

[C]

c1 ∼ c1 l1
1a
� l1

Tφ−∗ ψ : (x , u) ∈ F and xy ∼ xy ∈ C
〈T−∗〉

〈{Fφ : (y , u)}, ∅〉 | 〈{Tψ : (xy , u)}, ∅〉

Remark: c1 ◦ 1r = c1

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

FI : (1r , l1)
√

3 T〈a〉〈b〉P : (c1, l1)

T〈b〉P : (c2, l2)

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

T〈f 〉φ : (x , u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci , li)}, {x
f
� ci , u

f
� li}〉

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)

F♦P : (c1, l1)

FI : (1r , l1)
√

3 T〈a〉〈b〉P : (c1, l1)

√
4 T〈b〉P : (c2, l2)

TP : (c3, l3)

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

c2
b
� c3 l2

b
� l3

T〈f 〉φ : (x , u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci , li)}, {x
f
� ci , u

f
� li}〉

DMBI Tableaux method - an example

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)√

5 F♦P : (c1, l1)

FI : (1r , l1)
√

3 T〈a〉〈b〉P : (c1, l1)

√
4 T〈b〉P : (c2, l2)

TP : (c3, l3)

FP : (c3, l3)

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

c2
b
� c3 l2

b
� l3

F♦φ : (x , u) ∈ F and x
f
� y ∈ C and u

f
� v ∈ C

〈F♦〉
〈{Fφ : (y , v)}, ∅〉

c1
a
� c2 c2

b
� c3 〈tµ〉

c1
ab
� c3

l1
a
� l2 l2

b
� l3 〈tt〉

l1
ab
� l3

DMBI Tableaux method - an example
Step 2: Application of rules

[F]
√

1 F(I−∗ 〈a〉〈b〉P)→ ♦P : (c1, l1)

√
2 TI−∗ 〈a〉〈b〉P : (c1, l1)√

5 F♦P : (c1, l1)

FI : (1r , l1)

×

√
3 T〈a〉〈b〉P : (c1, l1)

√
4 T〈b〉P : (c2, l2)

TP : (c3, l3)

FP : (c3, l3)

×

[C]

c1 ∼ c1 l1
1a
� l1

c1
a
� c2 l1

a
� l2

c2
b
� c3 l2

b
� l3

The formula (I−∗ 〈a〉〈b〉P)→ ♦P is valid

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Counter-model extraction

Counter-model extraction

Definition: Hintikka CSS

A Hintikka CSS 〈F , Cr 〉Cs is a unclosed branch such that ”all
information has been extracted”:

1 Tφ : (x , u) 6∈ F or Fφ : (y , u) 6∈ F or x ∼ y 6∈ C

2-12 ...

13 If T♦φ : (x , u) ∈ F then ∃y ∈ Lr , ∃f ∈ La, ∃v ∈ Ls , x
f
� y ∈ C and

u
f
� v ∈ C and Tφ : (y , v) ∈ F

14 If F♦φ : (x , u) ∈ F then ∀y ∈ Lr , ∀f ∈ La, ∀v ∈ Ls , (x
f
� y ∈ C and

u
f
� v ∈ C)⇒ Fφ : (y , v) ∈ F

Lemma: counter-model extraction

A counter-model can be extracted from a Hintikka branch.

DMBI Counter-model extraction
Counter-model extraction

Function Ω

Let 〈F , C〉 be a Hintikka CSS. Ω(〈F , C〉) = (M, J·K, | · |,�K), such
that:

R = Dr (C)/ ∼ S = As(C) Act = Da(C) ∪ {α} (where α 6∈ Da(C))

e = [1r]

1 = 1a

[x] • [y] = [x ◦ y]

µ(a, [x]) =

{
↑ if {y | x

a
� y ∈ C} = ∅

{y | x
a
� y ∈ C} otherwise

s1 ||f 〉〉 s2 iff s1
f
� s2 ∈ C

For all a1, a2 ∈ Act, a1 � a2 =

{
a1 � a2 if a1 � a2 ∈ Da(C)
α otherwise

For all a ∈ SAct , |a| =

{
a if a ∈ Da(C)
α otherwise

([x], s) ∈ JPK iff ∃y ∈ Lr , x ∈ [y] and TP : (y , s) ∈ F

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

Conclusions

Conclusions

A modal extension of BBI for resource transformations

- That captures resource transformations (≈ MBI)

- That includes modalities ♦ and � (≈ DBI)

- That has a sound and complete calculus with a countermodel
extraction method

- Some Questions:

- How to model concurrent processes (protocols or Web
services)?

- Will the concurrent process simulation allow us to model it?

- Should ∗ separate only resources or resources and processes?

Future works

Future works

Our goals:

- To study concurrent process simulation in DMBI

- To define a language L to model systems, like Demos2k (HP
Labs 2008) or Core Gnosis (HP Labs 2010), which does only
simulation

- To study satisfiability in DMBI⇒ by using the tableau method

- To provide a decision procedure (bounds on number of
resources, fragments of DMBI)

- To model protocol or web service problems: are there new
properties that we can express with DMBI?

Future works

Example 1: mutual exclusion

AtomicResources = {J}

AtomicAction aC = e -> e;

AtomicAction aNC = e -> e;

AtomicAction aP = J -> e;

AtomicAction aV = e -> J;

Process p {

s1 = aNC:s1 + aP:s2;

s2 = aC:s2 + aV:s1;

}

init = (J, p.s1 # p.s1);

check [] [aC#aC] F; // F = bottom

check ! <> (J*J*T); // T = top

Future works

Example 2: producer / consumer

AtomicResources = {R}

AtomicAction p = e -> R;

AtomicAction nP = e -> e;

AtomicAction c = R -> e;

AtomicAction nC = e -> e;

Proc producer {

s1 = p:s1 + nP:s1;

}

Proc consummer {

s1 = c:s1 + nC:s1;

}

init = (e, producer.s1 # consummer.s1);

check [](I -> !<nP#c>T);

	Language and semantics
	Expressiveness
	Tableaux method
	Counter-model extraction
	Conclusions - Perspectives

