A modal extension of BBI for resource transformation (work in progress)

J.R. Courtault - D. Galmiche

ANR DynRes Meeting - Nancy
February 2013

Introduction - resource logics

Resources

■ Resource is a key notion in computer science:

- Memory
- Processes
- Messages

■ Different concerns about resources:

- Location
- Ownership
- Access to
- Consumption of
- Study of resources and related notions through logics

Introduction - resource logics

Bunched Implications (BI) logic (O'Hearn and Pym 1999, Pym 2002)

■ $\mathbf{B I}=\left\{\begin{array}{l}\wedge, \vee, \rightarrow, \top, \perp \text { (additives) } \\ *, \rightarrow, \mathrm{I} \text { (multiplicatives) }\end{array}\right.$
BI (intuitionistic additives), BBI (classical additives)

- Sequents with bunches (trees of formulae where internal nodes

$$
\text { are "," or ";"): } \frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi} \quad \frac{\Gamma ; \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi}
$$

- Bunches can be viewed as areas of a model:

$$
A,(B ; C), A \rightsquigarrow \begin{array}{|c:c:c|}
\hline A & B C & A \\
\hline
\end{array}
$$

- Resources are areas and propositional symbols are properties of resources (areas)
- BI and BBI focus on separation (,) / sharing (;)

Introduction - resource logics

Separation logics

■ BI and BBI logical kernels of separation logics
■ Some separation logics:

- PL: Pointer (Separation) Logic with $(x \mapsto a, b)$ (O'Hearn et al. 2001)
- BI-Loc: Separation Logic with locations (Biri-Galmiche 2007)
- MBI: Separation Logic with modalities for processes ($R, E \xrightarrow{a} R^{\prime}, E^{\prime}$) (Pym-Toft 2006)
- DBI: Separation Logic with modalities for dynamic properties of resources (Courtault-Galmiche 2013)
- Study of dynamics in resource/separation logics

Introduction - resource logics

Dynamics in resource logics

■ What are systems with dynamic resources?

- Systems that transform resources (producers / consumers)
- Systems that modify resource properties (value of cells of a cellular automata): no resource production/consumption
- Resource logics and dynamics
- BI: Properties on resources $=$ no dynamics
- MBI ($R, E \xrightarrow{a} R^{\prime}, E^{\prime}$): Dynamics is resource transformation
- DBI (BI + $\diamond, \square)$: Dynamic properties of resources

Introduction - MBI logic

MBI and SCRP (Pym-Tofte 2006)

■ SCRPr: Synchronous Calculus of Resources and Processes

- Processes: $E::=0|X| a: E|E+E| E \times E|\nu R . E| f i x_{i} X . E$
- SCRPr transitions (some rules):
$\overline{R, ~ a ~: ~}: ~^{\rightarrow} \mu(a, R), E(\mu(a, R) \downarrow) \quad \frac{R, E \xrightarrow{a} R^{\prime}, E^{\prime}}{R \circ S, E \times F \xrightarrow{a \# b} R^{\prime} \circ S^{\prime}, E^{\prime} \times F^{\prime}}(R \circ S \downarrow)$

■ MBI: BBI + modalities $\left(\langle a\rangle,[a],\langle a\rangle_{\nu},[a]_{\nu}\right)$

- Forcing relation:
- $R, E \vDash \phi * \psi$ iff $\exists R_{1}, R_{2}, E_{1}, E_{2} \cdot R=R_{1} \circ R_{2}$ and $E \sim E_{1} \times E_{2}$ and $R_{1}, E_{1} \vDash \phi$ and $R_{2}, E_{2} \vDash \psi$
- $R, E \vDash\langle a\rangle \phi$ iff $\exists R^{\prime}, E^{\prime} \cdot R, E \xrightarrow{a} R^{\prime}, E^{\prime}$ and $R^{\prime}, E^{\prime} \vDash \phi$
- $R, E \vDash\langle a\rangle_{\nu} \phi$ iff $\exists T, R^{\prime}, E^{\prime} \cdot R \circ T, E \xrightarrow{a} R^{\prime}, E^{\prime}$ and $R^{\prime}, E^{\prime} \vDash \phi$

Introduction - MBI logic

An example: mutual exclusion

■ Processes:
$E \stackrel{\text { def }}{=} n c: E+$ critical $: E_{\text {critical }}$
$E_{\text {critical }} \stackrel{\text { def }}{=}$ critical $: E_{\text {critical }}+$ critical $: E$

- Minimum resources required for the action: $\rho(n c)=\{e\}$ and $\rho($ critical $)=\{R\}$
- The μ function: $\mu(a, R)=R$ for any a action
- The action critical\#critical is never performed:
$R, E \times E \vDash[$ critical\#critical $] \perp$
- Problems:
- Only a calculus with bunches and without completeness
- $R, E \times E \vDash[$ critical\#critical $] \perp$ does not mean that in any reachable state, couple (resource, process), it is impossible to execute two concurrent critical actions (need of \diamond and \square)

Introduction－DBI logic

DBI logic

－Dynamic modal BI
－BI with modalities \diamond and \square
－Dynamic resource properties
－A calculus that is sound and complete
■ DBI models：
－resources（resource monoid）
－states and a state relation
－Forcing relation：
－$r, s \vDash \phi * \psi$ iff $\exists r^{\prime}, r^{\prime \prime} \cdot r^{\prime} \bullet r^{\prime \prime} \sqsubseteq r$ and $r^{\prime}, s \vDash \phi$ and $r^{\prime \prime}, s \vDash \psi$ （remark：＊separates only the resource r ）
－$r, s \vDash \diamond \phi$ iff $\exists s^{\prime} \cdot s \preceq s^{\prime}$ and $r, s^{\prime} \vDash \phi$

Introduction - DBI logic

An example: properties on states of webservices

- A set of composed webservices $W=\left\{W_{0}, W_{1}, W_{2}, W_{3}, \ldots\right\}$
- A model:

- An interpretation $\llbracket . \rrbracket$:

$$
\begin{aligned}
& -\llbracket P_{i d l e} \rrbracket=\left\{\left(S, t_{i}\right) \mid \exists W_{i} \in S \cdot W_{i} \text { is idle at time } t_{i}\right\} \\
& \text { - } \llbracket P_{\text {running }} \rrbracket=\left\{\left(S, t_{i}\right) \mid \exists W_{i} \in S \cdot W_{i} \text { is running at time } t_{i}\right\}
\end{aligned}
$$

where $S \subseteq W$ is a set of webservices.
For example: $S, t \vDash P_{\text {idle }}$ if there is at least a webservice in S that is idle at time t

Introduction - DBI logic

An example: properties on states of webservices

- Properties that can be expressed:

$$
\begin{aligned}
- & \left\{W_{0}, W_{1}\right\}, t_{1} \vDash P_{\text {idle }} \\
- & \left\{W_{0}, W_{1}\right\}, t_{1} \vDash P_{\text {idle }} \wedge P_{\text {idle }} \text { but }\left\{W_{0}, W_{1}\right\}, t_{1} \not \vDash P_{\text {idle }} * P_{\text {idle }} \\
- & \left\{W_{0}, W_{1}\right\}, t_{0} \vDash P_{\text {idle }} * P_{\text {idle }} \\
- & \left\{W_{0}, W_{1}\right\}, t_{0} \vDash\left(P_{\text {idle }} * P_{\text {idle }}\right) \wedge \diamond\left(P_{\text {idle }} * P_{\text {running }}\right)
\end{aligned}
$$

■ Problem: resource transformation cannot be express in DBI (it is not possible to model the messages that are produced / exchanged by the webservices)

Introduction - results

Some results

■ DMBI logic

- captures resource transformation ($\approx \mathbf{M B I}$)
- includes modalities \diamond and $\square(\approx \mathbf{D B I})$
- Restriction to only one process $(\not \approx \mathbf{M B I})$

■ Semantics: μ-dynamic resource monoids

- Proof theory: a tableaux method that is sound and complete
- Counter-model extraction

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Logic - Language

Language

$■ \mathbf{D M B I}=\mathbf{B B I}+\langle a\rangle[a] \diamond \square:$

$$
\phi::=p|\perp| \mathrm{I}|\phi \rightarrow \phi| \phi * \phi|\phi \rightarrow \phi|\langle a\rangle \phi|[a] \phi| \diamond \phi \mid \square \phi
$$

- Syntactic sugar:

$$
\begin{array}{crl}
\neg \phi & \equiv \phi \rightarrow \perp & \top \\
\phi \vee \neg \perp \\
\phi \vee \equiv \neg \phi \rightarrow \psi & \phi \wedge \psi \equiv \neg(\phi \rightarrow \neg \psi) \\
{[\mathrm{a}] \phi} & \equiv \neg\langle a\rangle \neg \phi & \square \phi \equiv \neg \diamond \neg \phi
\end{array}
$$

DMBI Logic - Semantics

Semantics

- Resource monoid: $\mathcal{R}=(R, \bullet, e)$
- R is a set of resources
- $e \in R$ is the unit resource
- $\bullet R \times R \rightarrow R$ such that, for any $r_{1}, r_{2}, r_{3} \in R$:
- Neutral element: $r_{1} \bullet e=e \bullet r_{1}=r_{1}$
- Commutativity: $r_{1} \bullet r_{2}=r_{2} \bullet r_{1}$
- Associativity: $r_{1} \bullet\left(r_{2} \bullet r_{3}\right)=\left(r_{1} \bullet r_{2}\right) \bullet r_{3}$

Remark: • is total because a resource is viewed as a multiset of atomic resources

DMBI Logic－Semantics

Semantics

－Action monoid（non commutative）： $\mathcal{A}=(A c t, \odot, 1)$
－Act is a set of actions
－ $1 \in$ Act is the unit action
－$\odot:$ Act \times Act \rightarrow Act such that，for any $a_{1}, a_{2}, a_{3} \in$ Act：
－Neutral element：$a_{1} \odot 1=1 \odot a_{1}=a_{1}$
－Associativity：$a_{1} \odot\left(a_{2} \odot a_{3}\right)=\left(a_{1} \odot a_{2}\right) \odot a_{3}$
Remark：actions are viewed as lists of atomic actions

DMBI Logic - Semantics

Semantics

■ A μ-dynamic resource monoid: $\mathcal{M}=(\mathcal{R}, \mathcal{A}, S, \| \cdot\rangle, \mu)$

- S is a set of states
$-\| \cdot\rangle \subseteq S \times A c t \times S$, such that:
- \|• \rangle-unit: $\left.s_{1} \| 1\right\rangle s_{1}$
- \|• \rangle-composition: if $\left.s_{1} \| a_{1}\right\rangle s_{2}$ and $\left.s_{2} \| a_{2}\right\rangle s_{3}$ then $\left.s_{1} \| a_{1} \odot a_{2}\right\rangle s_{3}$
- $\mu: A c t \times R \rightharpoonup R$, such that:
- μ-unit: $\mu(1, r) \downarrow$ and $\mu(1, r)=r$
- μ-composition: if $\mu\left(a_{1}, r\right) \downarrow$ and $\mu\left(a_{2}, \mu\left(a_{1}, r\right)\right) \downarrow$ then $\mu\left(a_{1} \odot a_{2}, r\right) \downarrow$ and $\mu\left(a_{1} \odot a_{2}, r\right)=\mu\left(a_{2}, \mu\left(a_{1}, r\right)\right)$
- Denotations:
- $r, s \xrightarrow{a} r^{\prime}, s^{\prime}$ iff $\mu(a, r) \downarrow, \mu(a, r)=r^{\prime}$ and $\left.s \| a\right\rangle s^{\prime}$
$-r, s \rightsquigarrow r^{\prime}, s^{\prime}$ iff $r, s \xrightarrow{a_{0}} r_{1}, s_{1} \xrightarrow{a_{1}} \ldots \xrightarrow{a_{n-1}} r_{n}, s_{n} \xrightarrow{a_{n}} r^{\prime}, s^{\prime}$

DMBI Logic - Semantics
Semantics
μ-Model: $\mathcal{K}=\left(\mathcal{M}, \llbracket \cdot \rrbracket,|\cdot|, \vDash_{\mathcal{K}}\right)$
$-r, s \vDash_{\mathcal{K}} p$ iff $(r, s) \in \llbracket p \rrbracket$

- $r, s \vDash_{\mathcal{K}} \perp$ never
$-r, s \vDash_{\mathcal{K}} \mathrm{I}$ iff $r=e$
- $r, s \vDash_{\mathcal{K}} \phi \rightarrow \psi$ iff $r, s \vDash_{\mathcal{K}} \phi \Rightarrow r, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}} \phi * \psi$ iff $\exists r_{1}, r_{2} \in R \cdot r=r_{1} \bullet r_{2}$ and $r_{1}, s \vDash_{\mathcal{K}} \phi$ and $r_{2}, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}} \phi \rightarrow \psi$ iff $\forall r^{\prime} \in R \cdot r^{\prime}, s \vDash_{\mathcal{K}} \phi \Rightarrow r \bullet r^{\prime}, s \vDash_{\mathcal{K}} \psi$
- $r, s \vDash_{\mathcal{K}}\langle a\rangle \phi$ iff $\exists r^{\prime} \in R \cdot \exists s^{\prime} \in S \cdot r, s \xrightarrow{|a|} r^{\prime}, s^{\prime}$ and $r^{\prime}, s^{\prime} \vDash_{\mathcal{K}} \phi$
- $r, s \vDash_{\mathcal{K}} \diamond \phi$ iff $\exists r^{\prime} \in R \cdot \exists s^{\prime} \in S \cdot r, s \rightsquigarrow r^{\prime}, s^{\prime}$ and $r^{\prime}, s^{\prime} \vDash_{\mathcal{K}} \phi$

Validity: ϕ is valid iff $r, s \vDash_{\mathcal{K}} \phi$ for any \mathcal{K}, r and s

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Logic - Expressiveness

Example 1 - Petri nets

- A Petri net $\mathcal{P}=(P, T$, pre, post $)$

■ We show that \mathcal{P} is a μ-DRM $\mathcal{M}=(\mathcal{R}, \mathcal{A}, S, \| \cdot\rangle, \mu)$:

- $\mathcal{R}=(R, \bullet, e)$ where:
- R is the set of all multisets over P
- - is the addition over multisets
- e is the empty multiset
- $\mathcal{A}=(A c t, \odot, 1)$ where:
- Act is the set of lists over T
- \odot is the concatenation of lists
- 1 is the empty list
- $S=\left\{s_{1}\right\}$
- $\left.s_{1} \| t_{1} \odot \ldots \odot t_{n}\right\rangle s_{1}$ for any $t_{1}, \ldots, t_{n} \in T$
$-\mu\left(t_{1} \odot \ldots \odot t_{n}, M\right)= \begin{cases}\uparrow & \text { if } \nexists M_{1}, \ldots, M_{n} \in R \text { such that } \\ & M\left[t_{1}\right\rangle M_{1}\left[t_{2}\right\rangle \ldots\left[t_{n}\right\rangle M_{n} \\ M_{n} & \text { otherwise }\end{cases}$

DMBI Logic - Expressiveness

Example 1 - Petri nets

- A μ-Model $\mathcal{K}=\left(\mathcal{M}, \llbracket \cdot \rrbracket,|\cdot|, \vDash_{\mathcal{K}}\right)$:
- $\llbracket p \rrbracket=\left\{\left([p], s_{1}\right)\right\}$ for any $p \in P$
- $|t|=t$ for any $t \in T$

■ Examples: [a] , $s_{1} \vDash_{\mathcal{K}} \diamond(c * d)$ and [a], $s_{1} \vDash_{\mathcal{K}}\left\langle t_{1}\right\rangle b$
■ As opposed to PN semantics for BI (O'Hearn-Yang 1999):

- No monotonicity that encodes reachability: [a], $s_{1} \not \forall \mathcal{K} b$ but $[a] \vDash_{B 1} b$ and [a], $s_{1} \vDash_{\mathcal{K}} \diamond b$
- \rightarrow and \neg are classical: $[b] \not \forall_{B I} \neg a$ but $[b] \vDash_{\mathcal{K}} \neg a$

■ Remark: this example uses only one state s_{1}

DMBI Logic - Expressiveness

Example 2 - Concurrent process simulation

- In DMBI there is only one process:

How models concurrent systems like webservices or protocol?
■ Idea: let A_{1} and A_{2} two automata. The automaton $A_{1} \times A_{2}$ is the automaton that simulates the concurrent execution of A_{1} and A_{2}.

■ Objective: let $\left.\mathcal{M}_{i}=\left(\mathcal{R}, \bullet, e, \mathcal{A}, S_{i}, \| \cdot\right\rangle_{i}, \mu_{i}\right)$ such that $1 \leqslant i \leqslant n$.
We want to construct $\mathcal{M}=(\mathcal{R}, \bullet, e, \mathcal{A}, S, \| \cdot\rangle, \mu)$ such that:

$$
\begin{gathered}
r_{i}, s_{i} \xrightarrow{a_{i}} r_{i}^{\prime}, s_{i}^{\prime} \text { for } 1 \leqslant i \leqslant n \text { iff } \\
r_{1} \bullet \ldots \bullet r_{n}, s_{1} / \ldots / s_{n} \xrightarrow{a_{1} \# \ldots \# a_{n}} r_{1}^{\prime} \bullet \ldots \bullet r_{n}^{\prime}, s_{1}^{\prime} / \ldots / s_{n}^{\prime}
\end{gathered}
$$

■ Question: what hypothesis on μ ?

$$
(\mu(a, R) \downarrow \quad \Rightarrow \quad \mu(a, R \bullet S) \downarrow \text { and } \mu(a, R \bullet S)=\mu(a, R) \bullet S)
$$

DMBI Logic - Expressiveness

Some questions

- MBI:
- $R, E \vDash \mathrm{I}$ iff $R=e$ and $E \sim 1$
- $R, E \vDash \phi * \psi$ iff $\exists R_{1}, R_{2}, E_{1}, E_{3} \cdot R=R_{1} \circ R_{2}$ and $E \sim E_{1} \times E_{2}$ and $R_{1}, E_{1} \vDash \phi$ and $R_{2}, E_{2} \vDash \psi$
- DMBI:
- $r, s \vDash_{\mathcal{K}} \mathrm{I}$ iff $r=e$
- $r, s \vDash_{\mathcal{K}} \phi * \psi$ iff $\exists r_{1}, r_{2} \in R \cdot r=r_{1} \bullet r_{2}$ and $r_{1}, s \vDash_{\mathcal{K}} \phi$ and $r_{2}, s \vDash_{\mathcal{K}} \psi$
- What is the meaning of the formula I ?
"no resource" or "no resource and unit process"
\Rightarrow it should mean "no resource" : I $\rightarrow[a] \perp$ (without resource the action a cannot be performed)
- What kind of decomposition with $*$? decomposition of resources only or of resources and processes
\Rightarrow case studies (protocols or Web services)

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Proof theory - Tableaux method

An extension of $\mathbf{B I}$ calculus (Galmiche-Méry-Pym 2005) based on constrained set of statements (CSS in Larchey 2012)

■ Resource labels (R), action labels (Act) and state labels (S)
■ Resource constraints $(=), \mu$-constraints (μ) and transition constraints (\|. \rangle)

■ Signed formulae: $\mathbb{S} \phi:(x, u)$
■ Branches are denoted $\langle\mathcal{F}, \mathcal{C}\rangle$ where \mathcal{C} is a set of resource, transition and μ constraints

- Assertions/requirements

DMBI Proof theory - Tableaux method

Labels

- Resource labels $\left(L_{r}\right)$:

$$
X::=1_{r}\left|c_{i}\right| X \circ X
$$

where $c_{i} \in \gamma_{r}=\left\{c_{1}, c_{2}, \ldots\right\}$ and \circ is a function on L_{r} that is associative, commutative and 1_{r} is its unit. $x \circ y$ is denoted $x y$.

- Action labels $\left(L_{a}\right)$:

$$
X::=1_{a}\left|a_{i}\right| d_{i} \mid X, X
$$

where $a_{i} \in S_{A c t}, d_{i} \in \gamma_{a}=\left\{d_{1}, d_{2}, \ldots\right\}, S_{A c t} \cap \gamma_{a}=\emptyset$ and . is a function on L_{a} that is associative (not commutative) and 1_{a} is its unit. $f . g$ is denoted $f g$.

■ State labels $\left(L_{s}\right): L_{s}=\left\{I_{1}, I_{2}, \ldots\right\}$.

DMBI Proof theory－Tableaux method

Constraints

－Resource constraints：
－encode equality on resources．
－$x \sim y$ where x and y are resource labels．

■ μ－constraints：
－encode the function μ ．
－$x \xrightarrow{f} y$ where x and y are resource labels and f is an action label．
－Transition constraints：
－Encode the function $\| \cdot\rangle$ ．
－$u \stackrel{f}{\mapsto} v$ where u and v are state labels and f is an action label．

DMBI Proof theory－Tableaux method

Constraint closure
－Rules that product resource constraints：

$$
\left.\left.\begin{array}{lcc}
\hline 1_{r} \sim 1_{r}
\end{array} 1_{r}\right\rangle \quad \frac{x \sim y}{y \sim x}\left\langle s_{r}\right\rangle, \frac{x y \sim x y}{x \sim x}\left\langle d_{r}\right\rangle\right)
$$

DMBI Proof theory - Tableaux method

Constraint closure
■ Rules that product μ-constraints:

$$
\left.\begin{array}{cc}
\frac{x \sim x}{x \xrightarrow{1_{a}} x}\left\langle 1_{\mu}\right\rangle \\
x \xrightarrow{f} y \quad x \sim x^{\prime} \\
x^{\prime} \xrightarrow{f} y
\end{array} k_{\left.\mu_{1}\right\rangle}\right\rangle \stackrel{f \stackrel{f}{\rightarrow} y \quad y \xrightarrow{f g} z}{ }\left\langle t_{\mu}\right\rangle
$$

- Rules that product transition constraints:

$$
\frac{u \stackrel{f}{\mapsto} v}{u \stackrel{1_{a}}{\mapsto} u}\left\langle 1_{t_{1}}\right\rangle \quad \frac{u \stackrel{f}{\mapsto} v}{v \stackrel{1_{a}}{\longmapsto} v}\left\langle 1_{t_{2}}\right\rangle \quad \frac{u \stackrel{f}{\mapsto} v}{u \stackrel{f g}{\stackrel{g}{\mapsto} w} w}\left\langle t_{t}\right\rangle
$$

DMBI Tableaux method

Modal rules

- Assertion rules:

Introduction of new labels and assertions (or constraints)

$$
\begin{gathered}
\frac{\mathbb{T}\langle f\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, l_{i}\right)\right\},\left\{x \stackrel{f}{\rightarrow} c_{i}, u \stackrel{f}{\mapsto} I_{i}\right\}\right\rangle}\langle\mathbb{T}\langle-\rangle\rangle \\
\left.\frac{\mathbb{T}\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, l_{i}\right)\right\},\left\{x \stackrel{d_{i}}{\rightarrow} c_{i}, u \stackrel{d_{i}}{\rightleftharpoons} l_{i}\right\}\right\rangle}\langle\mathbb{T}\rangle\right\rangle
\end{gathered}
$$

- Requirement rules:

Conditions that must be verified in the closure of constraints

$$
\begin{aligned}
& \frac{\mathbb{F}\langle f\rangle \phi:(x, u) \in \mathcal{F} \text { and } x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}}}{\langle\mathbb{F} \phi:(y, v), \emptyset\rangle}\langle\mathbb{F}\langle-\rangle\rangle \\
& \left.\frac{\mathbb{F} \diamond \phi:(x, u) \in \mathcal{F} \text { and } x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}}}{\langle\{\mathbb{F} \phi:(y, v)\}, \emptyset\rangle}\langle\mathbb{F}\rangle\right\rangle
\end{aligned}
$$

DMBI Tableaux method

Definition: closed branch

A CSS (branch) $\langle\mathcal{F}, \mathcal{C}\rangle$ is closed iff one of these conditions holds:

- $\mathbb{T} \phi:(x, u) \in \mathcal{F}, \mathbb{F} \phi:(y, u) \in \mathcal{F}$ and $x \sim y \in \overline{\mathcal{C}}$
- $\mathbb{F I}:(x, u) \in \mathcal{F}$ and $1_{r} \sim x \in \overline{\mathcal{C}}$
- $\mathbb{T} \perp:(x, u) \in \mathcal{F}$

Definition: μ-proof

A μ-proof for a formula ϕ is a μ-tableau for ϕ which is closed.

Theorem: soundness

If there exists a μ-proof for a formula ϕ then ϕ is valid.

Theorem: completeness

If a formula ϕ is valid then there is a μ-proof for ϕ.

DMBI Tableaux method - an example

- How to prove $\phi \equiv(\mathrm{I} \rightarrow\langle a\rangle\langle b\rangle P) \rightarrow \diamond P$?

Step 1: Initialization

$$
\begin{array}{cc}
{[\mathcal{F}]} & {[\mathcal{C}]} \\
\mathbb{F}(\mathrm{I}-*\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) & c_{1} \sim c_{1} \quad I_{1} \stackrel{1_{a}}{\longrightarrow} I_{1}
\end{array}
$$

DMBI Tableaux method - an example

$$
\begin{array}{cc}
{[\mathcal{F}]} & {[\mathcal{C}]} \\
\mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) & c_{1} \sim c_{1} \quad l_{1} \stackrel{1_{a}}{\mapsto} l_{1}
\end{array}
$$

DMBI Tableaux method - an example

$$
\begin{array}{cc}
{[\mathcal{F}]} & c_{1} \sim c_{1} \\
\sqrt{\sqrt{l}]} \mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) \\
\mid \\
\mathbb{T I - \langle a \rangle \langle b \rangle P : (c _ { 1 } , l _ { 1 })} \\
\mathbb{F} \diamond P:\left(c_{1}, l_{1}\right) \\
\frac{\mathbb{F} \phi \rightarrow \psi:(x, u) \in \mathcal{F}}{\langle\{\mathbb{T} \phi:(x, u), \mathbb{F} \psi:(x, u)\}, \emptyset\rangle}\langle\mathbb{F} \rightarrow\rangle
\end{array}
$$

DMBI Tableaux method - an example

[F]

$\sqrt{1} \mathbb{F}\left(\mathrm{I} \rightarrow\left\langle\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, h_{1}\right)\right.\right.$

$$
V_{2} \mathbb{T I} *\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)
$$

$$
\mathbb{F} \diamond P:\left(c_{1}, l_{1}\right)
$$

$\mathbb{F I}:\left(1_{r}, l_{1}\right)$

$$
\frac{\mathbb{T} \phi * \psi:(x, u) \in \mathcal{F} \text { and } x y \sim x y \in \overline{\mathcal{C}}}{\langle\{\mathbb{F} \phi:(y, u)\}, \emptyset\rangle \mid\langle\{\mathbb{T} \psi:(x y, u)\}, \emptyset\rangle}\langle\mathbb{T}-*\rangle
$$

Remark: $c_{1} \circ 1_{r}=c_{1}$

DMBI Tableaux method - an example

$$
\begin{aligned}
& \text { [F] } \\
& \sqrt{ } \mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) \\
& \mathbb{F I : (1 _ { r } , l _ { 1 })} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{F I : (1 _ { r } , l _ { 1 })} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{F I : (1 _ { r } , l _ { 1 })} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{F I : (1 _ { r } , l _ { 1 })} \underset{\sqrt{\sqrt{2}} \mathbb{T}\rangle P:\left(c_{1}, l_{1}\right)}{\mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)} \\
& \mathbb{T}\langle b\rangle P:\left(c_{2}, l_{2}\right) \\
& \text { [C] } \\
& c_{1} \sim c_{1} \quad I_{1} \stackrel{1_{a}}{\longrightarrow} I_{1} \\
& c_{1} \xrightarrow{a} c_{2} \quad I_{1} \stackrel{a}{\mapsto} I_{2} \\
& \frac{\mathbb{T}\langle f\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, I_{i}\right)\right\},\left\{x \stackrel{f}{\rightarrow} c_{i}, u \stackrel{f}{\rightharpoonup} I_{i}\right\}\right\rangle}\langle\mathbb{T}\langle-\rangle\rangle
\end{aligned}
$$

DMBI Tableaux method - an example

[F]

$$
\frac{\mathbb{T}\langle f\rangle \phi:(x, u) \in \mathcal{F}}{\left\langle\left\{\mathbb{T} \phi:\left(c_{i}, l_{i}\right)\right\},\left\{x \stackrel{f}{\rightarrow} c_{i}, u \stackrel{f}{\mapsto} l_{i}\right\}\right\rangle}\langle\mathbb{T}\langle-\rangle\rangle
$$

$$
\begin{aligned}
& \sqrt{1} \mathbb{F}(\mathrm{I} \rightarrow\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right) \\
& \sqrt{ } 2 \mathbb{T I} \rightarrow\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right) \\
& \mathbb{F} \diamond P:\left(c_{1}, l_{1}\right) \\
& \mathbb{F I}:\left(1_{r}, l_{1}\right) \\
& \sqrt{ }{ }_{3} \mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right) \\
& \begin{array}{c}
\sqrt{ } \mathbb{T}\langle b\rangle P:\left(c_{2}, l_{2}\right) \\
1 \\
\mathbb{T} P:\left(c_{3}, l_{3}\right)
\end{array}
\end{aligned}
$$

DMBI Tableaux method - an example

[F]
$\sqrt{ } \mathbb{F}(\mathrm{I} *\langle a\rangle\langle b\rangle P) \rightarrow \diamond P:\left(c_{1}, l_{1}\right)$

$$
\sqrt{ } \mathbb{T I} *\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right)
$$

$$
\sqrt{5} \mathbb{F} \diamond P:\left(c_{1}, l_{1}\right)
$$

$\mathbb{F I}:\left(1_{r}, h_{1}\right)$

$$
\begin{gathered}
\sqrt{ } \mathbb{T}\langle a\rangle\langle b\rangle P:\left(c_{1}, l_{1}\right) \\
1 \\
\sqrt{ }{ }_{4} \mathbb{T}\langle b\rangle P:\left(c_{2}, l_{2}\right) \\
1 \\
\mathbb{T} P:\left(c_{3}, l_{3}\right) \\
1 \\
\mathbb{F} P:\left(c_{3}, l_{3}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\mathbb{F} \diamond \phi:(x, u) \in \mathcal{F} \text { and } x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}}}{\langle\{\mathbb{F} \phi:(y, v)\}, \emptyset\rangle}\langle\mathbb{F} \diamond\rangle \\
\frac{c_{1} \xrightarrow{a} c_{2} \quad c_{2} \xrightarrow{b} c_{3}}{c_{3}}\left\langle t_{\mu}\right\rangle \quad \frac{I_{1} \stackrel{a}{\mapsto} I_{2} \quad I_{2} \stackrel{b}{\mapsto} I_{3}}{I_{1} \xrightarrow{a b} I_{3}}\left\langle t_{t}\right\rangle
\end{gathered}
$$

[c]

$$
\begin{array}{ll}
c_{1} \stackrel{a}{\rightarrow} c_{2} \\
c_{2} \xrightarrow{b} c_{3} & I_{1} \stackrel{a}{\mapsto} I_{2} \\
& \stackrel{b}{\mapsto} I_{3}
\end{array}
$$

DMBI Tableaux method - an example

Step 2: Application of rules

The formula $(\mathrm{I}-*\langle a\rangle\langle b\rangle P) \rightarrow \diamond P$ is valid

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

DMBI Counter-model extraction

Counter-model extraction

Definition: Hintikka CSS

A Hintikka $\operatorname{CSS}\left\langle\mathcal{F}, \mathcal{C}_{r}\right\rangle \mathcal{C}_{s}$ is a unclosed branch such that "all information has been extracted":
$1 \mathbb{T} \phi:(x, u) \notin \mathcal{F}$ or $\mathbb{F} \phi:(y, u) \notin \mathcal{F}$ or $x \sim y \notin \overline{\mathcal{C}}$
2-12 ...

$$
\begin{aligned}
& 13 \text { If } \mathbb{T} \diamond \phi:(x, u) \in \mathcal{F} \text { then } \exists y \in L_{r}, \exists f \in L_{a}, \exists v \in L_{s}, x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}} \text { and } \\
& u \stackrel{f}{\mapsto} v \in \overline{\mathcal{C}} \text { and } \mathbb{T} \phi:(y, v) \in \mathcal{F}
\end{aligned}
$$

14 If $\mathbb{F} \diamond \phi:(x, u) \in \mathcal{F}$ then $\forall y \in L_{r}, \forall f \in L_{a}, \forall v \in L_{s},(x \stackrel{f}{\rightarrow} y \in \overline{\mathcal{C}}$ and $u \stackrel{f}{\rightleftharpoons} v \in \overline{\mathcal{C}}) \Rightarrow \mathbb{F} \phi:(y, v) \in \mathcal{F}$

Lemma: counter-model extraction

A counter-model can be extracted from a Hintikka branch.

DMBI Counter-model extraction

Counter-model extraction

Function Ω

Let $\langle\mathcal{F}, \mathcal{C}\rangle$ be a Hintikka CSS. $\Omega(\langle\mathcal{F}, \mathcal{C}\rangle)=\left(\mathcal{M}, \llbracket \cdot \rrbracket,|\cdot|, \vDash_{\mathcal{K}}\right)$, such that:

- $R=\mathcal{D}_{r}(\overline{\mathcal{C}}) / \sim \quad S=\mathcal{A}_{s}(\mathcal{C}) \quad$ Act $=\mathcal{D}_{a}(\overline{\mathcal{C}}) \cup\{\alpha\}\left(\right.$ where $\left.\alpha \notin \mathcal{D}_{a}(\overline{\mathcal{C}})\right)$
- $e=\left[1_{r}\right]$
- $1=1_{a}$
- $[x] \cdot[y]=[x \circ y]$
- $\mu(a,[x])= \begin{cases}\uparrow & \text { if }\{y \mid x \xrightarrow{a} y \in \overline{\mathcal{C}}\}=\emptyset \\ \{y \mid x \xrightarrow{a} y \in \overline{\mathcal{C}}\} & \text { otherwise }\end{cases}$
- $\left.s_{1} \| f\right\rangle s_{2}$ iff $s_{1} \stackrel{f}{\rightleftharpoons} s_{2} \in \overline{\mathcal{C}}$
- For all $a_{1}, a_{2} \in A c t, a_{1} \odot a_{2}= \begin{cases}a_{1} \cdot a_{2} & \text { if } a_{1} \cdot a_{2} \in \mathcal{D}_{a}(\overline{\mathcal{C}}) \\ \alpha & \text { otherwise }\end{cases}$
- For all $a \in S_{A c t,},|a|= \begin{cases}a & \text { if } a \in \mathcal{D}_{a}(\overline{\mathcal{C}}) \\ \alpha & \text { otherwise }\end{cases}$
- $([x], s) \in \llbracket P \rrbracket$ iff $\exists y \in L_{r}, x \in[y]$ and $\mathbb{T} P:(y, s) \in \mathcal{F}$

Plan

1 Language and semantics

2 Expressiveness

3 Tableaux method

4 Counter-model extraction

5 Conclusions - Perspectives

Conclusions

Conclusions

A modal extension of $\mathbf{B B I}$ for resource transformations

- That captures resource transformations ($\approx \mathrm{MBI}$)
- That includes modalities \diamond and $\square(\approx \mathbf{D B I})$
- That has a sound and complete calculus with a countermodel extraction method
- Some Questions:
- How to model concurrent processes (protocols or Web services)?
- Will the concurrent process simulation allow us to model it?
- Should $*$ separate only resources or resources and processes?

Future works

Future works

■ Our goals:

- To study concurrent process simulation in DMBI
- To define a language L to model systems, like Demos2k (HP Labs 2008) or Core Gnosis (HP Labs 2010), which does only simulation
- To study satisfiability in DMBI \Rightarrow by using the tableau method
- To provide a decision procedure (bounds on number of resources, fragments of DMBI)
- To model protocol or web service problems: are there new properties that we can express with DMBI?

Future works

Example 1: mutual exclusion

```
AtomicResources = {J}
```

AtomicAction aC $=$ e $->$ e;
AtomicAction aNC $=e->e$;
AtomicAction aP $=\mathrm{J} \rightarrow \mathrm{e}$;
AtomicAction $\mathrm{aV}=\mathrm{e}->\mathrm{J}$;
Process p \{
s1 = aNC:s1 + aP:s2;
s2 = aC:s2 + aV:s1;
\}
init $=(J, p . s 1$ \# p.s1);
check [] [aC\#aC] F; // F = bottom
check ! <> (J*J*T); // T = top

Future works

Example 2: producer / consumer

AtomicResources $=\{R\}$

AtomicAction $\mathrm{p}=\mathrm{e}->\mathrm{R}$;
AtomicAction $n P=e->e ;$
AtomicAction $c=R->e ;$
AtomicAction $\mathrm{nC}=\mathrm{e}->\mathrm{e}$;

Proc producer \{
s1 = p:s1 + nP:s1;
\}

Proc consummer \{
s1 = c:s1 + nC:s1;
\}
init $=$ (e, producer.s1 \# consummer.s1);
check [] (I -> ! <nP\#c>T);

