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Introduction - resource logics

Resources
m Resource is a key notion in computer science:
- Memory
- Processes

- Messages

m Different concerns about resources:
- Location
- Ownership
- Access to

- Consumption of

» Study of resources and related notions through logics



Introduction - resource logics

Bunched Implications (BI) logic (O'Hearn and Pym 1999, Pym
2002)

A, V,—, T, L (additives)
Bl = SN
, —k, I (multiplicatives)

Bl (intuitionistic additives) , BBI (classical additives)

m Sequents with bunches (trees of formulae where internal nodes
Lok Lok

are " or ""): Fé=¢ TFo—o

m Bunches can be viewed as areas of a model:
A(B;C),A ~ [ A BC' A |

m Resources are areas and propositional symbols are properties of
resources (areas)

m Bl and BBI focus on separation (,) / sharing (;)



Introduction - resource logics

Separation logics

m Bl and BBI logical kernels of separation logics

m Some separation logics:

- PL: Pointer (Separation) Logic with (x — a, b)
(O’'Hearn et al. 2001)

- Bl-Loc: Separation Logic with locations (Biri-Galmiche 2007)

- MBI: Separation Logic with modalities for processes
(R, E % R, E") (Pym-Toft 2006)

- DBI: Separation Logic with modalities for dynamic properties of
resources (Courtault-Galmiche 2013)

» Study of dynamics in resource/separation logics



Introduction - resource logics

Dynamics in resource logics

m What are systems with dynamic resources?
- Systems that transform resources (producers / consumers)

- Systems that modify resource properties (value of cells of a
cellular automata): no resource production/consumption

m Resource logics and dynamics
- BI: Properties on resources = no dynamics
- MBI (R,E -2+ R',E’): Dynamics is resource transformation

- DBI (Bl + ¢, O): Dynamic properties of resources



Introduction - MBI logic

MBI and SCRP (Pym-Tofte 2006)

m SCRPr: Synchronous Calculus of Resources and Processes
- Processes: E:=0|X|a:E|E+E|ExE|vRE | fixX.E
- SCRPr transitions (some rules):

wam ) RESRE S F5SF

o (Ros 1)
R,a: E = p(a,R), E 2
wa R) RoS ExF R oS E xF

= MBI: BBI + modalities ((a), [a], (a),, [a],)

m Forcing relation:

- R,E':¢*’(/JifFHRl,RQ,El,E2-R:R10R2 and ENE1><E2
and Rl,El |=¢>and RQ,EQ':’(/)

- R EE(a)¢iffIR,E'-R,EZ R E and R\, E' E ¢
- REE(a),¢iffIT,R,E'-RoT,EL R E' and R E'F ¢



Introduction - MBI logic

An example: mutual exclusion

m Processes:

def ..
E = nc: E + critical : Ezitical

def .. .-
Ecriticar = critical : Ecpiticas + critical - E

m Minimum resources required for the action: p(nc) = {e} and
p(critical) = {R}

m The p function: p(a, R) = R for any a action

m The action critical##critical is never performed:
R, E x E E [critical#tcritical] L

m Problems:
- Only a calculus with bunches and without completeness
- R, E x E E [critical#tcritical] L does not mean that in any
reachable state, couple (resource, process), it is impossible to
execute two concurrent critical actions (need of ¢ and [J)



Introduction - DBI logic

DBI logic
m Dynamic modal Bl
- Bl with modalities ¢ and OJ
- Dynamic resource properties

- A calculus that is sound and complete

m DBI models:
- resources (resource monoid)

- states and a state relation

m Forcing relation:
-rsEGxYiff3r,r - rfer" Crandr,sE¢gand r’,skEy
(remark: * separates only the resource r)

- rsEQ@iffds’-s<s and r,s’ E ¢



Introduction - DBI logic

An example: properties on states of webservices

m A set of composed webservices W = { Wy, Wy, Wo, Wi, ...}

m A model:
th ti t t3 ta s
Wo:id ru ru ru id id (id: idle)
Wy:id id ru ru ru id (ru: running)

m An interpretation [.]:
- [Piae] = {(S,t;) | IW; € S- W, is idle at time t;}
- [Prunning] = {(S, t;}) | IW; € S - W, is running at time t;}

where S C W is a set of webservices.

For example: S, t F Pjg if there is at least a webservice in S
that is idle at time t



Introduction - DBI logic

An example: properties on states of webservices

Wo:id ru ru ru id id (id: idle)
Wy:id id ru ru ru id (ru: running)

m Properties that can be expressed:
- {Wo, Wi}, t1 F Pige
- {Wo, Wi}, t1 F Pigie A Pigie but {Wo, Wi}, t1 I Pidie * Pide
- {Wo, Wi}, to F Pidie * Pie
- {Wo, Wi}, to E (Pidte * Pidie) A\ O(Pidie * Prunning)

m Problem: resource transformation cannot be express in DBI
(it is not possible to model the messages that are produced /
exchanged by the webservices)



Introduction - results

Some results

m DMBI logic

- captures resource transformation (= MBI)
- includes modalities ¢ and O (=~ DBI)

- Restriction to only one process (% MBI)
m Semantics: p-dynamic resource monoids
m Proof theory: a tableaux method that is sound and complete

m Counter-model extraction
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Language and semantics



DMBI Logic - Language

Language
= DMBI = BBI + (a) [a] O O:
pu=p|L|T[¢—=d|¢xd|o—xo|(a)¢][ao]0s [T
m Syntactic sugar:
—p=¢— L T=-1
PVY =0 =1 dAY=(d = )
[a]¢ = —(a)—¢ Ho = ~0-¢



DMBI Logic - Semantics

Semantics

m Resource monoid: R = (R, e, €)
- R is a set of resources
- e € R is the unit resource
- o: Rx R — R such that, forany ri,n, 3 € R:
- Neutral element: nee=cen=n
- Commutativity: nen =rnen
- Associativity: ne(r.nern)=(rnen)er

Remark: e is total because a resource is viewed as a multiset of
atomic resources



DMBI Logic - Semantics

Semantics

m Action monoid (non commutative): A = (Act, ®, 1)
- Act is a set of actions
- 1 € Act is the unit action

- ®: Act x Act — Act such that, for any ay, ap, az € Act:

- Neutral element: a1 01 =10a1=a

- Associativity: a1 @ (a2 © a3) = (a1 © a2) ©® a3

Remark: actions are viewed as lists of atomic actions



DMBI Logic - Semantics

Semantics

m A p-dynamic resource monoid: M = (R, A, S, |-), 1)
- S is a set of states
- |-y €S x Act x S, such that:
= |-)-unit: s1|1) st
- |-)-composition: if s1 |a1) s2 and s, |a2) s3 then s1 |a1 @ a2) s3
- p: Act X R — R, such that:
- peunit: p(1,r) L and p(1,r)=r
- p-composition: if u(ai, r) | and p(az, p(ai, r)) 4 then
p(ar © az,r) | and p(a1 © az, r) = p(az, p(ar, r))
m Denotations:
- r,s 3 s iff u(a,r) |, p(a,r) =r" and s |a) s’

. a a an—1 a
-r,sr s iffr,s s s s, s



DMBI Logic - Semantics

Semantics
m p-Model: K = (M, [],]|-|,Ex)
- r,skx piff (r,s) € [p]
- r,sFx L never
-r,skcliffr=ce
-rskExo—=YiffrisEx o= r,skEx Y

-r,skcoxyiffdn,n e R-r=ren and n,s Fx ¢ and
f275':IC1/)

- sk iff Vi e R-rsExp=rer skEx

CrskEc (@6 iff3r eR-35 €S- rs s and 18 Exc ¢

-r,sEcQoiffarr e R-3s" €S- -ry;s~r',s" and r',s' Ex ¢

m Validity: ¢ is valid iff r,s Fx ¢ for any IC, r and s



Expressiveness



DMBI Logic - Expressiveness

Example 1 - Petri nets
m A Petri net P = (P, T, pre, post)

m We show that P is a i-DRM M = (R, A, S, |-), u):
- R =(R,e,e) where:
- R is the set of all multisets over P
- e is the addition over multisets
- e is the empty multiset

- A= (Act,®,1) where:

- Act is the set of lists over T

- @ is the concatenation of lists

- 1is the empty list
- 5 = {51}
- s |t1@...Ot,) s forany ty,..,t, €T

0 if AMy, ..., M, € R such that
N

-t © .. @ty M) = M[t1) My [t) ... [ta) M,
M, otherwise



DMBI Logic - Expressiveness

Example 1 - Petri nets
m A p-Model € = (M, [],]|,Ex):
- [l = {(lpl, 1)} for any p € P
- |t|=tforanyte T

a t b

d
m Examples: [a],s1 Ex O(c*d) and [a],s1 Ex (t1)b

m As opposed to PN semantics for Bl (O'Hearn-Yang 1999):

- No monotonicity that encodes reachability: [a], s Hx b but
[a] Esr b and [a],s1 Ex Ob

- — and — are classical: [b] Hg —a but [b] Fx —a

m Remark: this example uses only one state s;



DMBI Logic - Expressiveness

Example 2 - Concurrent process simulation

m In DMBI there is only one process:
How models concurrent systems like webservices or protocol?

m ldea: let A; and Ay two automata. The automaton A; x Ay is
the automaton that simulates the concurrent execution of A;
and A,.

m Objective: let M; = (R,e,e,A,S;,|-);, i) such that
1<i<n.
We want to construct M = (R, e, e, A, S,|-), 1) such that:

aj . .
riysi — rl,st for 1 < i< niff

rne..er, s/.../sp 2 Han, rie..erh si/../s

m Question: what hypothesis on p 7
(1(a,R) L = p(a,ReS)|and u(a,ReS)=p(aR)eS)



DMBI Logic - Expressiveness

Some questions
= MBI:
- R EFIffR=eand E~1
- REE¢*yiff AR, Ro, E1,E3-R=RioRyand E~ E; X E»
and Rl,El = ¢ and R2,E2 = w
= DMBI:
-rskEeliffr=e
-r,skx¢xyiffdn,mn € R-r=renand n,s Ex ¢ and
r2as':’Cw

» What is the meaning of the formula I ?
"no resource” or "no resource and unit process”

= it should mean "no resource”: I — [a] L
(without resource the action a cannot be performed)

» What kind of decomposition with * 7
decomposition of resources only or of resources and processes

= case studies (protocols or Web services)



Tableaux method



DMBI Proof theory - Tableaux method

An extension of Bl calculus (Galmiche-Méry-Pym 2005) based on
constrained set of statements (CSS in Larchey 2012)

m Resource labels (R), action labels (Act) and state labels (S)

m Resource constraints (=), u-constraints (x) and transition
constraints (||.))

m Signed formulae: S¢ : (x, u)

m Branches are denoted (F,C) where C is a set of resource,
transition and u constraints

m Assertions/requirements



DMBI Proof theory - Tableaux method

Labels
= Resource labels (L,):
Xuo=1|c¢|XoX

where ¢; € 4, = {c1, @, ...} and o is a function on L, that is
associative, commutative and 1, is its unit. x o y is denoted xy.

m Action labels (L,):
XI::].a‘a,'|d,'|X.X
where a; € Saq, di € Ya = {dl, dy, }, Sact N Ya = 0 and . is
a function on L, that is associative (not commutative) and 1,

is its unit. f . g is denoted fg.

m State labels (L;): Ls = {h,b,...}.



DMBI Proof theory - Tableaux method

Constraints

m Resource constraints:
- encode equality on resources.

- x ~ y where x and y are resource labels.

m p-constraints:

- encode the function p.

f . .
- x — y where x and y are resource labels and f is an action
label.

m Transition constraints:

- Encode the function |-).

f . .
- u— v where u and v are state labels and f is an action label.



DMBI Proof theory - Tableaux method

Constraint closure

m Rules that product resource constraints:

— X~y Xy ~ xy
1r'\’1r < > yNX <s’> X ~ X <dr>
/ !/
X~y y~=z X ~ X y~y
X ~ 7 <tr> XyNX/y/ <gr>
f f f
XYy X —»Z XYy




DMBI Proof theory - Tableaux method

Constraint closure

m Rules that product p-constraints:

f
XX g Xy ySz
1, P (tu)
X > X g
X —»Z
g ’ xhy y~y
XYy X ~ X 5 ~
P (Kpuy) - (Kuz)
x' —» y X —» y/
m Rules that product transition constraints:
f f f g
— —
M=V L=V o) ur—v V2 Wt

1, 1, fe
u—u Vr— v u— w



DMBI Tableaux method

Modal rules

m Assertion rules:
Introduction of new labels and assertions (or constraints)

T(f)¢ : (x,u) € F
UTé: (cis )} {x = cryu s 1))
TOd : (x,u) € F
(T : ()} {x & cu 1)

(T(=))

(TO)

m Requirement rules:
Conditions that must be verified in the closure of constraints
F(f}q&:(x,u)G}'ande»yGEand uvel

(Fo: (v, v),0)

(F(=))

FO¢:(X,U)€fande>y€5and uLveé
{F¢: (v,v)},0)

(FO)



DMBI Tableaux method

Definition: closed branch

A CSS (branch) (F,C) is closed iff one of these conditions holds:
mTo:(x,u) €F Fo:(y,u)e Fand x~yeC
mFI:(x,u) € Fand 1, ~x€C
mTLl:(x,u)eF

Definition: u-proof

A p-proof for a formula ¢ is a u-tableau for ¢ which is closed.

Theorem: soundness

If there exists a u-proof for a formula ¢ then ¢ is valid.

Theorem: completeness

If a formula ¢ is valid then there is a u-proof for ¢.



DMBI Tableaux method - an example

» How to prove ¢ = (I = (a)(b)P) — OP ?

Step 1: Initialization

(7] ]

F(I — (a)(b)P) = OP : (c1, h) am~a  hEn




DMBI Tableaux method - an example

[F] [€]
F(I = (a)(b)P) — OP : (c1,h)

18
Ci~C /1 b d /1



DMBI Tableaux method - an example

[7] il
V1 FI = (a)(b)P) — OP : (c1, h) a~a h -, h
|
TI — (a)(b)P : (c1, h)
FOP : (c1, h)

Fop —: (x,u) € F
({T¢ : (x,u),Fp: (x,u)},0)

(F—)



DMBI Tableaux method - an example

7] €}
V1 F(L—(a)(b)P) = OP : (c1, h) a~a bk
I
Vo TI = (a)(b)P : (c1, h)
FOP : (C17 /1)
~ ~
F1:(1,,h) T(a)(b)P : (c1,h)

T 1) : (x,u) € F and xy ~xy € C
{Fo: (y,u)},0) | {Ty: (xy,u)},0)

(T—)

Remark: ci0l, =1



DMBI Tableaux method - an example

(7] €]

Vy F(I~ (@) (b)P) — OP : (c1, k) a~a bk
I
Vo T (a)(b)P : (c1, h)
FOP : (c1, h)

~ ~
FI: (1, h) V3 T(a)(b)P : (c1, h)
I
T<b>P : (C27 I2) C1 —a» Co h >i> b

T(f)¢ : (x, u) c F
(T : (civ b)Y} {x = ciyu o 1)




DMBI Tableaux method - an example

(7] €]

Vi F(L () (b)P) = OP : (cy, h) a~a b2
I
V5 TL—x (a)(b)P : (c1, h)
FOP : (c1, h)

~ ~
FI: (1,,h) V3 T(a)(b)P : (c1, h)
I
\/ T<b>P (C27 /2) Cc1 —a» (o) h >i> h
| |
TP : (C37 /3) o) Hb) o) h—k

T(f)¢: (x,u) € F
(T = (ci, 1)}, {x > ciou s 1)




DMBI Tableaux method - an example

[7] [€]

V1 FI = (a)(b)P) — OP : (c1, h) a~a h - h
I
Vo TL— (a)(b)P : (c1, h)
Vs FOP : (a1, h)

~ ~
FI: (1,,h) V3 T(a)(b)P : (c1, h)
v, T(b >/|> (c2, h) a = e | hls b
TP : (|c3, ) G 2 g h—h
FP (|c3,/3) |

IF(}qb:(x,u)efandx—f»ye@and ulved
<{F¢ (v, )} 0)

Cl1 > C C2~>>C3 <t>
n

ab ab
C1 —> C3 /1 — /3

(FO)

hos b /2>i>/3

(te)



DMBI Tableaux method - an example

Step 2: Application of rules

(7] €]

V1 F(I = (a)(b)P) — OP : (c1, h) c~ h >1—a> h
I
Vo TL = (a)(b)P : (c1, h)
\/5 FOP N (Cl,ll)
~ ~
FI: (1,,h) V3 T(a)(b)P : (c1, h)
| |
X \/4 < >P (C27 12) c1 j» o) h >i> b

| 1
TP : (C3, /3) I _b» G /2 — /3
I
FP : (C37 /3)
I
X

The formula (I — (a)(b)P) — OP is valid



Counter-model extraction



DMBI Counter-model extraction

Counter-model extraction

Definition: Hintikka CSS

A Hintikka CSS (F,C,)Cs is a unclosed branch such that "all
information has been extracted":

1 Té: (x,u)gForFo:(y,u)g Forx~ygC
2-12 ...

13 If TO$ : (x,u) € F then 3y € L, 3If € Ly, v € Ly, x » y € C and
uLVGEandTgZ):(y,v)e]:

14 I FO¢ : (x,u) € F then Vy € Ly, ¥ € La, Wv € Le, (x — y € C and
u>i>VGE):HFQS:(y,v)E./T

Lemma: counter-model extraction

A counter-model can be extracted from a Hintikka branch.




DMBI Counter-model extraction

Counter-model extraction

Let (F,C) be a Hintikka CSS. Q((F,C)) = (M, [-],| - |,Ex), such

that:
B R=D,(C)/~ S=A(C) Act="D,(C)U{a} (where a & D,(C))
me=[1]
ml=1,

[x]ely] = [xoy]

e if{y|x>yeC=0
M(a7[X])—{ {y|x2>yeC} otherwise

. f =
si|f) s iff s1— s €C

ai . a ifai.a € Da(g)
«@ otherwise

For all a1, a2 € Act, a1 ©® ax = {

a ifaeD,(C)
«  otherwise

For all a € Sact, |a] = {

([x],s) e [P] iff 3y € Lr,x € [y] and TP : (y,s) € F



Conclusions - Perspectives



Conclusions

Conclusions

A modal extension of BBI for resource transformations

That captures resource transformations (=~ MBI)

- That includes modalities ¢ and O (=~ DBI)

That has a sound and complete calculus with a countermodel
extraction method

- Some Questions:

- How to model concurrent processes (protocols or Web
services)?

- Will the concurrent process simulation allow us to model it?

- Should * separate only resources or resources and processes?



Future works

m Our goals:
- To study concurrent process simulation in DMBI

- To define a language L to model systems, like Demos2k (HP
Labs 2008) or Core Gnosis (HP Labs 2010), which does only
simulation

- To study satisfiability in DMBI = by using the tableau method

- To provide a decision procedure (bounds on number of
resources, fragments of DMBI)

- To model protocol or web service problems: are there new
properties that we can express with DMBI?



Example 1: mutual exclusion

AtomicResources = {J}

AtomicAction aC = e -> e;
AtomicAction aNC = e -> e;
AtomicAction aP = J -> e;
AtomicAction aV = e -> J;

Process p {
sl = aNC:sl1l + aP:s2;
s2 = aC:s2 + aV:si;

init = (J, p.sl # p.sl);

check [] [aC#aC] F; // F = bottom
check ! <> (JxJ*T); // T = top



Example 2: producer / consumer

AtomicResources {R}

AtomicAction p = e -> R;
AtomicAction nP = e -> e;
AtomicAction ¢ =R -> e;
AtomicAction nC = e -> e;

Proc producer {

sl = p:sl + nP:si;
}

Proc consummer {
sl = c:s1 + nC:s1;

3

init = (e, producer.sl # consummer.sl);

check [J(I -> !<nP#c>T);
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