A short introduction to propositional dynamic logic with separation and parallel composition

CNAE-ANPT + UPB - UTH - UTM

Contents

1. Introduction and motivations
2. Algebras of binary relations and relation algebras
3. Proper and abstract fork algebras
4. Separation and parallel composition
5. Open problems

Introduction and motivations

Software specification, binary relations and fork

Specification languages must allow for a modular description of

- structural properties
- dynamic properties
- temporal properties

Different formalisms allow us to specify these properties

- first-order classical logic
- propositional and first-order dynamic logic
- different modal logics

Introduction and motivations

Software specification, binary relations and fork

An amalgamating formalism should

- be expressive enough
- have very simple semantics
- have a complete and simple deductive system

The formalism called fork algebras was proposed to this end

- it is presented in the form of an equational calculus
- it is complete with respect to a very simple semantics

Introduction and motivations

Software specification, binary relations and fork

Algebras of binary relations on some set A

- 0 , empty binary relation
- - R, complement of a binary relation R with respect to a largest relation E
- $R \cup S$, union of binary relations R and S
- Id, identity binary relation on A
- R^{-1}, transposition of a binary relation R
- $R \circ S$, composition of binary relations R and S

Introduction and motivations

Software specification, binary relations and fork

Monk (1964)

- a class of agebras containing these operations cannot be axiomatized by a finite set of equations

Bibliography
Monk, J.: On representable relation algebras. Michigan
Mathematical Journal 11 (1964) 207-210.

Introduction and motivations

Software specification, binary relations and fork

In order to overcome this drawback

- an extra binary operation on relations called fork is added

Addition of fork has two main consequences

- the class of algebras obtained can be axiomatized by a finite set of equations
- it induces a structure on the domain on top of which relations are built

Introduction and motivations

Software specification, binary relations and fork

Algebras of binary relations on some set A closed under a binary function \star

- $R_{\underline{\nabla}} S$, fork of binary relations R and S

The definition of the operation fork is given by

- $R_{\underline{\nabla}} S=\{(x, y \star z): x R y$ and $x S z\}$

Bibliography
Frias, M., Baum, G., Hæberer, A., Veloso, P.: Fork algebras are representable. Bulletin of the Section of Logic 24 (1995) 64-75.
Frias, M., Hæberer, A., Veloso, P.: A finite axiomatization for fork algebras. Logic Journal of the IGPL 5 (1997) 311-319.

Algebras of binary relations and relation algebras

History and definitions

$\left(\mathcal{R}, 0,-, \cup, l d,{ }^{-1}, \circ\right)$ is an algebra of binary relations if

- E, binary relation on a set A
- \mathcal{R}, set of binary relations on A
- if $R \in \mathcal{R}, R \subseteq E$
- \mathcal{R} is closed under $0,-, \cup, I d,{ }^{-1}$, 。
$\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ\right)$ is full if moreover
- its universe is of the form $2^{U \times U}$ for some set U
$\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ\right)$ is square if moreover
- its largest relation is of the form $U \times U$ for some set U

Algebras of binary relations and relation algebras

History and definitions

Theorem

- every full algebra of binary relations is square
- a square algebra of binary relations whose largest relation is $U \times U$ is a subalgebra of the full algebra of binary relations with universe $2^{U \times U}$
- every algebra of binary relations is embeddable in a direct product of full algebras of binary relations

Algebras of binary relations and relation algebras

History and definitions

Elementary theory of binary relations: Tarski (1941)

- syntax
- $R, S::=P|0|-R|(R+S)| 1^{\prime}\left|R^{-1}\right|(R ; S)$
- $\phi, \psi::=R=S|x R y| \perp|\neg \phi|(\phi \vee \psi) \mid \forall x \phi$
- axiomatization
- $\forall x \forall y \neg x 0 y$
- $\forall x \forall y(x-R y \leftrightarrow \neg x R y)$
- $\forall x \forall y(x(R+S) y \leftrightarrow x R y \vee x S y)$
- $\forall x x 1^{\prime} x$
- $\forall x \forall y \forall z\left(x R y \wedge y 1^{\prime} z \rightarrow x R z\right)$
- $\forall x \forall y\left(x R^{-1} y \leftrightarrow y R x\right)$
- $\forall x \forall y(x(R ; S) y \leftrightarrow \exists z(x R z \wedge z S y))$
- $R=S \leftrightarrow \forall x \forall y(x R y \leftrightarrow x S y)$

Algebras of binary relations and relation algebras

 History and definitionsCalculus of relations: Tarski (1941)

- syntax
- $R, S::=P|0|-R|(R+S)| 1^{\prime}\left|R^{-1}\right|(R ; S)$
- $\phi, \psi::=R=S|\perp| \neg \phi \mid(\phi \vee \psi)$
- axiomatization
- axiomatization for Boolean algebras
- $R^{-1^{-1}}=R$
- $(R ; S)^{-1}=S^{-1} ; R^{-1}$
- $(R ; S) ; T=R ;(S ; T)$
- $R ; 1^{\prime}=R$
- $(R ; S) \cdot T^{-1}=0 \rightarrow(S ; T) \cdot R^{-1}=0$
- $R ; 1=1 \vee 1 ;-R=1$

Algebras of binary relations and relation algebras

 History and definitions$\left(A, 0,-, \cup, I d,{ }^{-1}, \circ\right)$ is a relation algebra if

- $(A, 0,-, \cup)$ is a Boolean algebra
- $x^{-1^{-1}}=x$
- $(x \cup y)^{-1}=x^{-1} \cup y^{-1}$
- $(x \circ y)^{-1}=y^{-1} \circ x^{-1}$
- $(x \cup y) \circ z=(x \circ z) \cup(y \circ z)$
- $(x \circ y) \circ z=x \circ(y \circ z)$
- $x \circ l d=l d \circ x=x$
- $(x \circ y) \cap z=0$ iff $\left(z \circ y^{-1}\right) \cap x=0$ iff $\left(x^{-1} \circ z\right) \cap y=0$

Algebras of binary relations and relation algebras

History and definitions

Theorem

- every algebra of binary relations is a relation algebra

Questions: Tarski (1941)

- is every model of the calculus of relations isomorphic to an algebra of binary relations
- is it true that every formula of the calculus of relations that is valid in all algebras of binary relations is provable in the calculus of relations
- is it true that every formula of the elementary theory of binary relations can be transformed into an equivalent formula of the calculus of relations

Algebras of binary relations and relation algebras

History and definitions

Answers to Tarski's questions

- is every model of the calculus of relations isomorphic to an algebra of binary relations: NO, Lyndon $(1950,1956)$ and McKenzie (1970)
- is it true that every formula of the calculus of relations that is valid in all algebras of binary relations is provable in the calculus of relations: NO, Lyndon (1950)
- is it true that every formula of the elementary theory of binary relations can be transformed into an equivalent formula of the calculus of relations: NO, Tarski et al. (1987)

Proper and abstract fork algebras

On the origin of fork algebras

Recall the formula

- $\forall x \forall y \forall z \exists u\left(u 0^{\prime} x \wedge u 0^{\prime} y \wedge u 0^{\prime} z\right)$

Suppose we have some binary operator $\underline{\nabla}$ and some binary function \star such that

- $R_{\underline{\nabla}} S=\{(x, y \star z): x R y$ and $x S z\}$

Proper and abstract fork algebras

On the origin of fork algebras

The following are equivalent

- $\forall x \forall y \forall z \exists u\left(u 0^{\prime} x \wedge u 0^{\prime} y \wedge u 0^{\prime} z\right)$
- $\forall x \forall y \forall z \exists u\left(u 0^{\prime} x \wedge u\left(0^{\prime} \underline{\nabla} 0^{\prime}\right) y \star z\right)$
- $\forall x \forall y \forall z \exists u\left(x 0^{\prime-1} u \wedge u\left(0^{\prime} \underline{\nabla} 0^{\prime}\right) y \star z\right)$
- $\forall x \forall y \forall z\left(x\left(0^{\prime-1} \circ\left(0^{\prime} \underline{\nabla} 0^{\prime}\right)\right) y \star z\right)$
- $\forall x \forall y \forall z\left(x\left(0^{\prime-1} \circ\left(0^{\prime} \underline{\nabla} 0^{\prime}\right)\right) y \star z \leftrightarrow x 1 y \wedge x 1 z\right)$
- $\forall x \forall y \forall z\left(x\left(0^{\prime-1} \circ\left(0^{\prime} \underline{\nabla} 0^{\prime}\right)\right) y \star z \leftrightarrow x(1 \underline{\nabla} 1) y \star z\right)$
- $\left(0^{\prime-1} \circ\left(0^{\prime} \underline{\nabla} 0^{\prime}\right)\right)=(\underline{1} \underline{\nabla} 1)$

Proper and abstract fork algebras

On the origin of fork algebras

Development of the classes of proper and abstract fork algebras

- Hæberer and Veloso (1991), Veloso et al. (1992): $x \star y=$ the tree with subtrees x and y
- Veloso and Hæberer (1991): $x \star y=$ concatenation of the finite strings x and y
- Mikulás et al. (1992): the class of all algebras with binary relations with an operator $\underline{\nabla}$ defined by $R_{\underline{\nabla}} S=\{(x, y \star z): x R y$ and $x S z\}$ is not finitely axiomatizable

Proper and abstract fork algebras

Definition of the classes

$\left(\mathcal{R}, 0,-, \cup, I d,,^{-1}, \circ, \underline{\nabla}, \star\right)$ is a star proper fork algebra if

- $\left(\mathcal{R}, 0,-, \cup, I d,,^{-1}, \circ\right)$ is an algebra of binary relations on some set A
- : $A \times A \rightarrow A$ is injective
- \mathcal{R} is closed under $\underline{\nabla}$ where $R_{\underline{\nabla}} S=\{(x, y \star z): x R y$ and $x S z\}$
$\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ, \underline{\nabla}, \star\right)$ is full if moreover
- its universe is of the form $2^{U \times U}$ for some set U
$\left(\mathcal{R}, 0,-, \cup, I d,{ }^{-1}, \circ, \underline{\nabla}, \star\right)$ is square if moreover
- its largest relation is of the form $U \times U$ for some set U

Proper and abstract fork algebras

Definition of the classes

$\left(A, 0,-, \cup, l d,{ }^{-1}, \circ, \underline{\nabla}, \star\right)$ is an abstract fork algebra if

- $\left(A, 0,-, \cup, I d,{ }^{-1}, \circ\right)$ is a relation algebra
- $x \underline{\nabla} y=(x \circ(l d \underline{\nabla} 1)) \cap(y \circ(1 \underline{\nabla} l d))$
- $(x \underline{\nabla} y) \circ(z \underline{\nabla} t)^{-1}=\left(x \circ z^{-1}\right) \cap\left(y \circ t^{-1}\right)$
- $(l d \underline{\nabla} 1)^{-1} \underline{\nabla}(1 \underline{\nabla} l d)^{-1} \leq l d$

Cross is defined by the equation

- $x \otimes y::=\left((I d \underline{\nabla} 1)^{-1} \circ x\right) \underline{\nabla}\left((1 \underline{\nabla} I d)^{-1} \circ y\right)$

Proper and abstract fork algebras

Definition of the classes

Theorem

- every full proper fork algebra is square
- a square proper fork algebra whose largest relation is $U \times U$ is a subalgebra of the full proper fork algebra with universe $2^{U \times U}$
- every proper fork algebra is embeddable in a direct product of full proper fork algebras

Proper and abstract fork algebras

Definition of the classes

Theorem

- every proper fork algebra is an abstract fork algebra
- every abstract fork algebra is isomorphic to a proper fork algebra

Bibliography
Frias, M., Baum, G., Hæberer, A., Veloso, P.: Fork algebras are representable. Bulletin of the Section of Logic 24 (1995) 64-75.
Frias, M., Hæberer, A., Veloso, P.: A finite axiomatization for fork algebras. Logic Journal of the IGPL 5 (1997) 311-319.

Separation and parallel composition

PRSPDL

Syntax

- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|\boldsymbol{s}_{1}\right| \mathbf{s}_{2}\left|r_{1}\right| r_{2}|(\alpha ; \beta)|(\alpha \cup \beta)\left|\alpha^{\star}\right|(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Semantics

- a model is a structure of the form $\mathcal{M}=(W, R, *, V)$ where
- W is a nonempty set of states
- R is a function $a \mapsto R(a) \subseteq W \times W$
- * is a ternary relation over W
- V is a function $p \mapsto V(p) \subseteq W$

Separation and parallel composition

PRSPDL

Bibliography
Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.
Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific (2002).

Separation and parallel composition

PRSPDL

Truth conditions according to Benevides et al. (2011)

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(a)^{\mathcal{M}}=R(a)$
- $(\phi \text { ? })^{\mathcal{M}}=\left\{(x, y): x=y\right.$ and $\left.y \in(\phi)^{\mathcal{M}}\right\}$
- $\left(s_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y \star(x, z)\}$
- $\left(s_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y \star(z, x)\}$
- $\left(r_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x \star(y, z)\}$
- $\left(r_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x \star(z, y)\}$
- $(\alpha ; \beta)^{\mathcal{M}}=\left\{(x, y)\right.$: there exists $z \in W$ such that $x(\alpha)^{\mathcal{M}} z$ and $\left.z(\beta)^{\mathcal{M}} y\right\}$
- $(\alpha \cup \beta)^{\mathcal{M}}=(\alpha)^{\mathcal{M}} \cup(\beta)^{\mathcal{M}}$
- $\left(\alpha^{\star}\right)^{\mathcal{M}}=\{(x, y)$: there exists $n \in \mathbb{N}$ and there exists $z_{0}, \ldots, z_{n} \in W$ such that $\left.x=z_{0}(\alpha)^{\mathcal{M}} \ldots(\alpha)^{\mathcal{M}} z_{n}=y\right\}$
- $(\alpha \| \beta)^{\mathcal{M}}=\{(x, y)$: there exists $z, t, u, v \in W$ such that $x \star(z, t), y \star(u, v), z(\alpha)^{\mathcal{M}} u$ and $\left.t(\beta)^{\mathcal{M}} v\right\}$

Separation and parallel composition

PRSPDL

Truth conditions according to Frias (2002)

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(a)^{\mathcal{M}}=R(a)$
- $(\phi \text { ? })^{\mathcal{M}}=\left\{(x, y): x=y\right.$ and $\left.y \in(\phi)^{\mathcal{M}}\right\}$
- $\left(s_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y \star(x, z)\}$
- $\left(s_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $y \star(z, x)\}$
- $\left(r_{1}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x \star(y, z)\}$
- $\left(r_{2}\right)^{\mathcal{M}}=\{(x, y)$: there exists $z \in W$ such that $x \star(z, y)\}$
- $(\alpha ; \beta)^{\mathcal{M}}=\left\{(x, y)\right.$: there exists $z \in W$ such that $x(\alpha)^{\mathcal{M}} z$ and $\left.z(\beta)^{\mathcal{M}} y\right\}$
- $(\alpha \cup \beta)^{\mathcal{M}}=(\alpha)^{\mathcal{M}} \cup(\beta)^{\mathcal{M}}$
- $\left(\alpha^{\star}\right)^{\mathcal{M}}=\{(x, y)$: there exists $n \in \mathbf{N}$ and there exists $z_{0}, \ldots, z_{n} \in W$ such that $\left.x=z_{0}(\alpha)^{\mathcal{M}} \ldots(\alpha)^{\mathcal{M}} z_{n}=y\right\}$
- $(\alpha \| \beta)^{\mathcal{M}}=\{(x, y)$: there exists $z, t \in W$ such that $y \star(z, t), x(\alpha)^{\mathcal{M}} z$ and $\left.x(\beta)^{\mathcal{M}} t\right\}$

Separation and parallel composition

PRSPDL

Truth conditions

- in a model $\mathcal{M}=(W, R, *, V)$ we define
- $(p)^{\mathcal{M}}=V(p)$
- $(\perp)^{\mathcal{M}}$ is empty
- $(\neg \phi)^{\mathcal{M}}=W \backslash(\phi)^{\mathcal{M}}$
- $(\phi \vee \psi)^{\mathcal{M}}=(\phi)^{\mathcal{M}} \cup(\psi)^{\mathcal{M}}$
- $([\alpha] \phi)^{\mathcal{M}}=\left\{x\right.$: for all $y \in W$, if $\left.x(\alpha)^{\mathcal{M}} y, y \in(\alpha)^{\mathcal{M}}\right\}$

Separation and parallel composition

PRSPDL

A model $\mathcal{M}=(W, R, *, V)$ is said to be separated iff

- if $x *(y, z)$ and $x *(t, u), y=t$ and $z=u$

A model $\mathcal{M}=(W, R, *, V)$ is said to be deterministic iff

- if $x *(z, t)$ and $y *(z, t), x=y$

In a separated model $\mathcal{M}=(W, R, *, V)$ we have

- if $x\left(s_{1}\right)^{\mathcal{M}} z$ and $z\left(r_{1}\right)^{\mathcal{M}} y, x=y$
- if $x\left(s_{2}\right)^{\mathcal{M}} z$ and $z\left(r_{2}\right)^{\mathcal{M}} y, x=y$

In a deterministic separated model $\mathcal{M}=(W, R, *, V)$ we have

- if $x\left(r_{1}\right)^{\mathcal{M}} z, z\left(s_{1}\right)^{\mathcal{M}} y, x\left(r_{2}\right)^{\mathcal{M}} t$ and $t\left(s_{2}\right)^{\mathcal{M}} y, x=y$

Separation and parallel composition

PRSPDL

Restriction of the syntax

> - $\alpha, \beta::=a\left|s_{1}\right| s_{2}\left|r_{1}\right| r_{2}|(\alpha ; \beta)|(\alpha \cup \beta)$
> - $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

Bibliography
Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.

Separation and parallel composition

PRSPDL

Axiomatization

- all tautologies modus ponens necessitation
- $[\alpha](\phi \rightarrow \psi) \rightarrow([\alpha] \phi \rightarrow[\alpha] \psi)$
- $\left\langle r_{1}\right\rangle \phi \rightarrow\left[r_{1}\right] \phi \quad\left\langle r_{2}\right\rangle \phi \rightarrow\left[r_{2}\right] \phi$
- $\phi \rightarrow\left[s_{1}\right]\left\langle r_{1}\right\rangle \phi \quad \phi \rightarrow\left[s_{2}\right]\left\langle r_{2}\right\rangle \phi \quad \phi \rightarrow\left[r_{1}\right]\left\langle s_{1}\right\rangle \phi \quad \phi \rightarrow\left[r_{2}\right]\left\langle s_{2}\right\rangle \phi$
- $\left\langle s_{1}\right\rangle \top \leftrightarrow\left\langle s_{2}\right\rangle \top \quad\left\langle r_{1}\right\rangle \top \leftrightarrow\left\langle r_{2}\right\rangle \top$
- $\left\langle s_{1} ; r_{1}\right\rangle \phi \rightarrow\left[s_{1} ; r_{1}\right] \phi \quad\left\langle s_{2} ; r_{2}\right\rangle \phi \rightarrow\left[s_{2} ; r_{2}\right] \phi$
- $\left[s_{1} ; r_{2}\right] \phi \rightarrow \phi$
- $\phi \rightarrow\left[s_{1} ; r_{2}\right]\left\langle s_{1} ; r_{2}\right\rangle \phi$
- $\left[s_{1} ; r_{2}\right] \phi \rightarrow\left[s_{1} ; r_{2}\right]\left[s_{1} ; r_{2}\right] \phi$
- $[\alpha ; \beta] \phi \leftrightarrow[\alpha][\beta] \phi$
- $[\alpha \cup \beta] \phi \leftrightarrow[\alpha] \phi \wedge[\beta] \phi$

Separation and parallel composition

PRSPDL

Syntax

- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|\boldsymbol{s}_{1}\right| \boldsymbol{s}_{2}\left|r_{1}\right| r_{2}|(\alpha ; \beta)|(\alpha \cup \beta)\left|\alpha^{\star}\right|(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

For all $i \in\{1,2\}$ and for all s_{i}-free programs α

- the programs s_{i} and α are not equally interpreted in all separated models

For all $i \in\{1,2\}$ and for all r_{i}-free programs α

- the programs r_{i} and α are not equally interpreted in all separated models

Separation and parallel composition

PRSPDL

Syntax

- $\alpha, \beta::=\boldsymbol{a} \mid \phi$? $\left|\mathbf{s}_{1}\right| \mathbf{s}_{2}\left|r_{1}\right| r_{2}|(\alpha ; \beta)|(\alpha \cup \beta)\left|\alpha^{\star}\right|(\alpha| | \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

For all atomic programs a, b and for all $\|$-free programs α

- the programs $a \| b$ and α are not equally interpreted in all separated models

Separation and parallel composition

PRSPDL

Syntax

- $\alpha, \beta::=a \mid \phi$? $\left|\mathbf{s}_{1}\right| \mathbf{s}_{2}\left|r_{1}\right| r_{2}|(\alpha ; \beta)|(\alpha \cup \beta)\left|\alpha^{\star}\right|(\alpha \| \beta)$
- $\phi, \psi::=p|\perp| \neg \phi|(\phi \vee \psi)|[\alpha] \phi$

The following expressions are equally interpreted in all separated models for each programs α, β, for each formulas ϕ and for each atomic formulas p not occurring in α, β, ϕ

- $\langle\alpha \| \beta\rangle \phi$
- $\forall p\left(\left\langle r_{1}\right\rangle\langle\alpha\rangle\left\langle s_{1}\right\rangle(\phi \wedge p) \vee\left\langle r_{2}\right\rangle\langle\beta\rangle\left\langle s_{2}\right\rangle(\phi \wedge \neg p)\right)$

Separation and parallel composition

PRSPDL

The following expressions are equally interpreted in all separated models for each programs α, β, for each formulas ϕ and for each atomic formulas p not occurring in α, β, ϕ

- $\langle\alpha \| \beta\rangle \phi$
- $\forall p\left(\left\langle r_{1}\right\rangle\langle\alpha\rangle\left\langle s_{1}\right\rangle(\phi \wedge p) \vee\left\langle r_{2}\right\rangle\langle\beta\rangle\left\langle s_{2}\right\rangle(\phi \wedge \neg p)\right)$

Axiom

- $\langle\alpha \| \beta\rangle \phi \rightarrow\left(\left\langle r_{1}\right\rangle\langle\alpha\rangle\left\langle s_{1}\right\rangle(\phi \wedge \psi) \vee\left\langle r_{2}\right\rangle\langle\beta\rangle\left\langle s_{2}\right\rangle(\phi \wedge \neg \psi)\right)$

Inference rule

- from $\chi \rightarrow\left(\left\langle r_{1}\right\rangle\langle\alpha\rangle\left\langle s_{1}\right\rangle(\phi \wedge p) \vee\left\langle r_{2}\right\rangle\langle\beta\rangle\left\langle s_{2}\right\rangle(\phi \wedge \neg p)\right)$, infer

$$
\chi \rightarrow\langle\alpha \| \beta\rangle \phi
$$

Open problems

Truth conditions of Benevides et al. (2011)

- Decidability/complexity of satisfiability for the restriction considered by Benevides et al. (2011)
- Decidability/complexity of satisfiability for the full language
- Tableau calculus for the restriction considered by Benevides et al. (2011)
- Tableau calculus for the full language
- Axiomatization of validity for the full language

Truth conditions of Frias (2002)

- Same issues

Bibliography

Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing, recovering and parallel composition. Electronic Notes in Theoretical Computer Science 269 (2011) 95-107.
Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific (2002).
Frias, M., Baum, G., Hæberer, A.: Fork algebras in algebra, logic and computer science. Fundamenta Informaticæ32 (1997) 1-25.

Frias, M., Veloso, P., Baum, G.: Fork algebras: past, present and future. Journal of Relational Methods in Computer Science 1 (2004) 181-216.

