The dynamic logic of assignments

Andreas Herzig University of Toulouse and CNRS, IRIT, France

joint work with Philippe Balbiani (Toulouse) and Nicolas Troquard (Trento)

Workshop ANR DynRes, Paris, June 2012

Overview

PDL: abstract actions only

Propositional Dynamic Logic "abstracts away from the nature of the domain of computation and studies the pure interaction between programs and propositions" [Harel et al. 2000]

• update logics: concrete programs [van Benthem], [Baltag and Moss], [van Ditmarsch et al.], ...

•
$$\varphi! = "\varphi$$
 is publicly announced"

- relativise model *M* to $||\varphi||_M$: $W^{\varphi} = ||\varphi||_M$, $R^{\varphi} = R|_{||\varphi||_M}$
- alternatively: $R^{\varphi} = R \cap (W \times ||\varphi||_M)$
- $p \leftarrow \varphi = p$ is publicly assigned the truth value of φ

•
$$V^{p \leftarrow \varphi}(q) = \begin{cases} ||\varphi||_M & \text{if } q = p \\ V(p) & \text{if } q \neq p \end{cases}$$

Overview

PDL: abstract actions only

Propositional Dynamic Logic "abstracts away from the nature of the domain of computation and studies the pure interaction between programs and propositions" [Harel et al. 2000]

- update logics: concrete programs [van Benthem], [Baltag and Moss], [van Ditmarsch et al.], ...
 - $\varphi! = "\varphi$ is publicly announced"
 - relativise model *M* to $\|\varphi\|_M$: $W^{\varphi} = \|\varphi\|_M$, $R^{\varphi} = R|_{\|\varphi\|_M}$
 - alternatively: $R^{\varphi} = R \cap (W \times ||\varphi||_M)$
 - *p*←φ = "p is publicly assigned the truth value of φ"

•
$$V^{p \leftarrow \varphi}(q) = \begin{cases} ||\varphi||_M & \text{if } q = p \\ V(p) & \text{if } q \neq p \end{cases}$$

The logic of public announcements and public assignments

Dynamic Logic of Propositional Assignments

Reasoning about agents' capabilities: encoding coalition logic of propositional control

PAL-PA: language

- $Prp = \{p, q, ...\} = set of propositional variables$
- events:
 - $\varphi! = "\varphi$ is publicly announced"
 - *p*←φ = "p is publicly assigned the truth value of φ"
 - N.B.: don't confuse with assignments of object variables x←t of first-order Dynamic Logic
 - lists of public assignments
 - ϵ = empty list
 - executed in parallel
 - in case of conflict: leftmost assignments wins
 - $\alpha = (p \leftarrow \perp, p \leftarrow \top)$ makes p false
 - o complex events: ...
- formulas: ...

PAL-PA: language, ctd.

• BNF for assignments α , programs π and formulas φ :

$$\begin{array}{lll} \alpha & \coloneqq & \epsilon \mid \left(p \leftarrow \varphi, \alpha \right) \\ \pi & \coloneqq & \alpha \mid \pi; \pi \mid \pi \cup \pi \mid \pi^* \mid \varphi? \mid \varphi! \\ \varphi & \coloneqq & p \mid \top \mid \perp \mid \neg \varphi \mid \varphi \lor \varphi \mid [\pi] \varphi \mid K\varphi \end{array}$$

• else just as PDL:

• skip
$$\stackrel{\text{def}}{=} \top$$
?
• if φ then π_1 else $\pi_2 \stackrel{\text{def}}{=} \dots$
• while φ do $\pi \stackrel{\text{def}}{=} \dots$

- for ease of presentation: single agent
 - but everything extends to multiagent case

Models

- S5 models: $M = \langle W, \sim, V \rangle$ such that
 - W nonempty set
 - $\sim \subseteq W \times W$ equivalence relation
 - $V : \Pr \longrightarrow 2^W$ valuation
- interpretation of a formula = set of pointed models
 - $\|\varphi\| = \{(M_1, w_1), (M_2, w_2), \ldots\}$
- interpretation of a modality =

relation on the set of pointed models

•
$$\|\pi\| = \{ \langle (M_1, w_1), (M'_1, w'_1) \rangle, \langle (M_2, w_2), (M'_2, w'_2) \rangle, \ldots \}$$

Interpretation of formulas

business as usual:

$$\begin{aligned} \|\top\| &= \{(M, w) : (M, w) \text{ is a pointed S5 model} \} \\ \|\bot\| &= \emptyset \\ \|p\| &= \{(M, w) : w \in V(p) \} \\ \|\neg \varphi\| &= \dots \\ |\varphi \lor \psi\| &= \dots \\ \|\Box \varphi\| &= \{(M, w) : \text{ for every } (M', w') \text{ s.th. } (M, w) \|\Box\|(M', w'), \\ (M', w') \in \|\varphi\| \end{aligned}$$

where \square is any modal operator

Interpretation of epistemic operators

change actual world w according to epistemic relation ~:

$$(M, w) ||K|| (M', w') \quad \text{iff} \quad \begin{cases} W' = W, \\ \sim' = \sim, \\ V' = V, \\ w' \sim w \end{cases}$$

Interpretation of announcements

relativisation:

$$(M, w) ||\varphi|| (M', w') \quad \text{iff} \quad \begin{cases} W' = W \cap ||\varphi||_{M}, \\ \sim' = \sim \cap (W' \times W'), \\ V'(p) = V(p) \cap W', \\ w' = w \end{cases}$$

where $\|\varphi\|_{\mathbf{M}}$ is the extension of φ in *M*: $\|\varphi\|_{\mathbf{M}} = \{w : (M, w) \in \|\varphi\|\}$ $= \|\varphi\| \cap \{(M, w) : w \text{ world of } M\}$

Interpretation of assignments

update valuation V by list of assignments α :

$$(M, w) \|\alpha\| (M', w') \quad \text{iff} \quad \begin{cases} W' = W, \\ \sim' = \sim, \\ V'(p) = \|\alpha(p)\|_{M}, \\ w = w' \end{cases}$$

where list applies with priority to leftmost assignments:

$$\epsilon(p) = p$$

 $(q \leftarrow \varphi, lpha)(p) = egin{cases} arphi & ext{if } q = p \ lpha(p) & ext{if } q
eq p \end{cases}$

Propositional control

Interpretation of complex programs

business as usual:

$$\begin{aligned} \|\pi_1; \pi_2\| &= \|\pi_1\| \circ \|\pi_2\| \\ \|\pi_1 \cup \pi_2\| &= \|\pi_1\| \cup \|\pi_2\| \\ \|\pi^*\| &= (\|\pi\|)^* \\ \|\varphi^*\| &= \{\langle (M, w), (M, w) \rangle : w \in \|\varphi\|_M \} \end{aligned}$$

Propositional control

Satisfiability and validity

• business as usual:

 $\begin{array}{ll} \varphi \text{ satisfiable } & \text{iff } & \|\varphi\| \neq \|\bot\| \\ \varphi \text{ is valid } & \text{iff } & \|\varphi\| = \|\top\| \end{array}$

Complexity of satisfiability for fragments of PAL-PA

- the whole language: undecidable [Miller&Moss 2003]
 - announcements φ ! and Kleene star π^* are enough
- Ino PDL operators, no assignments: decidable [Plaza 1989]
 - monoagent case: NP complete [Lutz 2007]
 - multiagent case: PSPACE complete [Lutz 2007]
 - common knowledge: EXPTIME complete [Lutz 2007]
- Ino complex programs: decidable [van Ditmarsch et al. 2007]
 - complexity as above [van Ditmarsch et al., JANCL 2012]
- Inon-epistemic fragment: decidable (v.i.)
 - no complex programs: NP complete (apply reduction axioms)
 - no π*: PSPACE complete [Herzig et al. IJCAI 2011]
 - whole fragment: PSPACE complete (v.i.)

The logic of public announcements and public assignments

2 Dynamic Logic of Propositional Assignments

Reasoning about agents' capabilities: encoding coalition logic of propositional control

Dynamic Logic of Propositional Assignments DL-PA

DL-PA = non-epistemic fragment of PAL-PA:

$$\pi \quad ::= \quad p \leftarrow \top \mid p \leftarrow \bot \mid \pi; \pi \mid \pi \cup \pi \mid \pi^* \mid \varphi?$$

- pointed model = a single valuation [v. Eijck 2000]
- $p \leftarrow \varphi$ has same interpretation as $(\varphi?; p \leftarrow \top) \cup (\neg \varphi?; p \leftarrow \bot)$
- plus abstract actions à la PDL: undecidable [Tiomkin and Makowsky 1985]

DL-PA: decision procedure

key step: eliminate the Kleene star

- choose some π^* such that π is star-free
- 2 transform π into

$$(\varphi_1?;\alpha_1) \cup \cdots \cup (\varphi_n?;\alpha_n)$$

where every α_k is a sequence of assignments

Imake all the assignment sequences α_k assign exactly the same variables:

 $(\varphi_1?; \alpha_1) \cup \cdots \cup (\varphi_n?; \alpha_n)$ and $\Pr_{\alpha_1} = \ldots = \Pr_{\alpha_n}$

• replace π^* by

$$((\varphi_1?;\alpha_1) \cup \cdots \cup (\varphi_n?;\alpha_n))^{\leq n}$$

(uses that $Prp_{\alpha_k} = Prp_{\alpha_l}$ implies α_k ; $\alpha_l = \alpha_l$)

DL-PA: complexity

Theorem

DL-PA model checking is PSPACE-complete.

- hardness: encode QBF
- membership: deterministic algorithm working in polynomial space

Theorem

DL-PA satisfiability checking is PSPACE-complete.

- hardness: encode QBF
- membership:
 - satisfiability is in NPSPACE:
 - guess valuation V
 - model check in PSPACE whether $V \in ||\varphi||$ (v.s.)
 - INPSPACE = PSPACE [Savitch]

Dynamic Logic of Propositional Assignments

Reasoning about agents' capabilities: encoding coalition logic of propositional control

Propositional control in one slide

- Coalition Logic of Propositional Control CL-PC [v.d. Hoek et al. AIJ 2005, JAIR 2010]
 - stem from the language of ATL model checker MOCHA
 - model = valuation + 'agents control propositional variables'
 - agents can only assign truth values to variables they control

Ianguage:

- $\langle J \rangle \varphi$ = "coalition *J* can achieve φ (*if other agents do nothing*)"
- express capability operator of Coalition Logic CL:

 $\langle J \rangle [\bar{J}] \varphi = "J$ can achieve φ (whatever the other agents do)"

• in DL-PA:

- model = valuation (non epistemic)
- language:

 $\langle p \leftarrow \top \rangle \varphi =$ "after making *p* true, φ will be true" $\langle p \leftarrow \bot \rangle \varphi =$ "after making *p* false, φ will be true"

- 'get more for the same price':
 - polynomial translation of CL-PC
 - same complexity as CL-PC
 - extensible: norms, counts-as relation, knowledge, ...

Propositional control in one slide

- Coalition Logic of Propositional Control CL-PC [v.d. Hoek et al. AIJ 2005, JAIR 2010]
 - stem from the language of ATL model checker MOCHA
 - model = valuation + 'agents control propositional variables'
 - agents can only assign truth values to variables they control

Ianguage:

- $\langle J \rangle \varphi$ = "coalition *J* can achieve φ (*if other agents do nothing*)"
- express capability operator of Coalition Logic CL:

 $\langle J \rangle [\bar{J}] \varphi = "J$ can achieve φ (whatever the other agents do)"

• in DL-PA:

- model = valuation (non epistemic)
- Ianguage:

 $\langle p \leftarrow \top \rangle \varphi =$ "after making *p* true, φ will be true" $\langle p \leftarrow \bot \rangle \varphi =$ "after making *p* false, φ will be true"

• 'get more for the same price':

- polynomial translation of CL-PC
- same complexity as CL-PC
- extensible: norms, counts-as relation, knowledge, ...

Ability to perform an assignment

- finite set of agents $\mathbb{A} = \{i, j, \ldots\}$
- countable set of propositional variables Prp is such that

 $Prp = Prp^0 \cup \{A_i(p \leftarrow \top), A_i(p \leftarrow \bot) : i \text{ agent}, p \text{ variable}\}$

- $Prp^0 = basic$ atomic facts
- $A_i(p \leftarrow \top) = "i$ is able to make p true"
- $A_i(p \leftarrow \bot) = "i$ is able to make p false"
- basic assignments α^0 = assignment of variable in Prp⁰
- also possible:
 - higher-order assignments

•
$$A_j(p \leftarrow \top) \leftarrow \bot = hinder j$$
 to set p to true

• ...

- higher-order abilities
 - $A_i(A_j(p \leftarrow \top) \leftarrow \bot) = i$ can hinder *j* to set *p* to true
 - ...

Ability to perform an assignment

- finite set of agents $\mathbb{A} = \{i, j, \ldots\}$
- countable set of propositional variables Prp is such that

 $Prp = Prp^0 \cup \{A_i(p \leftarrow \top), A_i(p \leftarrow \bot) : i \text{ agent}, p \text{ variable} \}$

- $Prp^0 = basic$ atomic facts
- $A_i(p \leftarrow \top) = "i$ is able to make p true"
- $A_i(p \leftarrow \bot) = "i$ is able to make p false"
- basic assignments a^0 = assignment of variable in Prp⁰
- also possible:
 - higher-order assignments
 - $A_j(p \leftarrow \top) \leftarrow \bot = hinder j$ to set p to true
 - ...
 - higher-order abilities
 - $A_i(A_j(p \leftarrow \top) \leftarrow \bot) = i$ can hinder *j* to set *p* to true

• . . .

Ability to perform an assignment

- finite set of agents $\mathbb{A} = \{i, j, \ldots\}$
- countable set of propositional variables Prp is such that

 $Prp = Prp^0 \cup \{A_i(p \leftarrow \top), A_i(p \leftarrow \bot) : i \text{ agent}, p \text{ variable}\}$

- $Prp^0 = basic$ atomic facts
- $A_i(p \leftarrow \top) = "i$ is able to make p true"
- $A_i(p \leftarrow \bot) = "i$ is able to make p false"
- basic assignments a^0 = assignment of variable in Prp⁰
- also possible:
 - higher-order assignments
 - $A_j(p \leftarrow \top) \leftarrow \bot = hinder j$ to set p to true
 - ...
 - higher-order abilities
 - $A_i(A_j(p \leftarrow \top) \leftarrow \bot) = i$ can hinder *j* to set *p* to true
 - ...

Basic capability to achieve a state of affairs

$$\Diamond_J^{A^0} \varphi =$$
 "coalition *J* can achieve φ by *J*'s basic assignments (if other agents do nothing)"

• interpretation of capability operator:

 $V \| \diamondsuit_{J}^{A^{0}} \| V' \quad \text{iff} \quad \text{there are } basic \text{ assignments } \alpha_{1}^{0}, \dots, \alpha_{n}^{0} \text{ s.th.}$ (a) $V \| \alpha_{1}^{0}; \dots; \alpha_{n}^{0} \| V'$ (b) for every α_{k}^{0} there is $i \in J$ with $V \in \|A_{i}(\alpha_{k}^{0})\|$

(same as Coalition Logic of Propositional Control CL-PC)

Basic capability to achieve a state of affairs

$$\Diamond_J^{A^0} \varphi =$$
 "coalition *J* can achieve φ by *J*'s basic assignments (if other agents do nothing)"

- interpretation of capability operator:
 - $\begin{array}{ll} V \| \diamondsuit_J^{A^0} \| V' & \text{iff} & \text{there are } \textit{basic assignments } \alpha_1^0, \dots, \alpha_n^0 \text{ s.th.} \\ (a) \ V \| \alpha_1^0; \dots; \alpha_n^0 \| V' \\ (b) \text{ for every } \alpha_k^0 \text{ there is } i \in J \text{ with } V \in \|A_i(\alpha_k^0)\| \end{array}$

(same as Coalition Logic of Propositional Control CL-PC)

Basic capability to achieve a state of affairs

$$\Diamond_J^{A^0} \varphi =$$
 "coalition *J* can achieve φ by *J*'s basic assignments (if other agents do nothing)"

• interpretation of capability operator:

$$\begin{array}{ll} V \| \diamondsuit_J^{A^0} \| V' & \text{iff} & \text{there are } \textit{basic assignments } \alpha_1^0, \dots, \alpha_n^0 \text{ s.th.} \\ & (a) \ V \| \alpha_1^0; \dots; \alpha_n^0 \| V' \\ & (b) \text{ for every } \alpha_k^0 \text{ there is } i \in J \text{ with } V \in \|A_i(\alpha_k^0)\| \end{array}$$

(same as Coalition Logic of Propositional Control CL-PC)

Basic capability: embedding CL-PC

Theorem

Formula φ is satisfiable in CL-PC models iff

$$\varphi \land Sym_{\varphi} \land Exh_{\varphi} \land Excl_{\varphi}$$

is DL-PA satisfiable, where:

 \Rightarrow CL-PC can be polynomially embedded into DL-PA plus $\diamond_J^{A^0}$

Propositional control

Basic capability: eliminating
$$\diamondsuit^{\operatorname{A^{0}}}_{J}$$

Theorem

Let $\operatorname{Prp}_{\varphi} = \{p_1, \dots, p_n\}$ the propositional variables occurring in φ . Then: $\langle A_J^{A_0} \varphi \leftrightarrow \langle \operatorname{skip} \cup (\bigvee_{i \in J} A_i(p_1 \leftarrow \top)?; p_1 \leftarrow \top) \cup (\bigvee_{i \in J} A_i(p_1 \leftarrow \bot)?; p_1 \leftarrow \bot) \rangle$ \vdots $\langle \operatorname{skip} \cup (\bigvee_{i \in J} A_i(p_n \leftarrow \top)?; p_n \leftarrow \top) \cup (\bigvee_{i \in J} A_i(p_n \leftarrow \bot)?; p_n \leftarrow \bot) \rangle \varphi$

 $\Rightarrow \diamondsuit_{J}^{A^{0}}$ can be polynomially reduced to DL-PA formulas

Conclusions

- DL-PA = PDL with concrete programs
 - PSPACE complete
- DL-PA, PAL-PA = 'Swiss knife' for MAS
 - concrete programs provide for an appropriate modelling in all concrete applications
 - embeds van der Hoek and Wooldridge's CL-PC
 - distinguish physical and legal ability [Herzig et al., CLIMA 2011]
 - Reiter's solution to the Frame Problem in reasoning about actions [Reiter 1990] can be polynomially encoded in DL-PA [van Ditmarsch et al., JLC 2012]
 - do multi-agent simulation in logic (Schelling's segregation game) [Gaudou et al., MABS 2011]