Petri net semantics for BI revisited

J.R. Courtault - D. Galmiche

ANR DynRes Meeting

LSV - ENS Cachan

June 2012

Introduction

Resource logics

- Some resource logics
 - Linear Logic LL (production / consumption) (Girard 1987)
 - Logic of Bunched Implications BI (separation / sharing) (Pym 2002)
- BI language = $\begin{cases} \land, \lor, \rightarrow, \top, \bot \text{ (additives / IL)} \\ *, \neg *, I \text{ (multiplicatives / MILL)} \end{cases}$
- BI calculi
 - Bunched sequent calculus (Pym 2002)
 - Labelled tableaux calculus (Galmiche-Méry-Pym 2005)
- BI semantics
 - Algebraic / topological / categorical semantics
 - Kripke semantics: resource monoid (RM)
 - \blacksquare with an incomplete treatment of \bot (RM)
 - \blacksquare with a complete treatment of \bot (partial RM / RM with inconsistency)
- ► Can we define a Petri net semantics for BI?

Introduction

Resource logics and Petri net semantics

- Petri net semantics for ILL (Engberg-Winskel 1990)
 - $A\&(B \oplus C) \dashv \vdash (A\&B) \oplus (A\&C)$ does not hold in **ILL**
 - Accessibility / provability $(M \to M')$ iff $\widehat{M} \to \widehat{M'}$
 - Completeness only for some ILL fragments (Engberg-Winskel 1997)
- Petri net semantics for **BI** (O'Hearn-Yang 1999)
 - $A \land (B \lor C) \dashv \vdash (A \land B) \lor (A \land C)$ holds in **BI**
 - Accessibility / provability studied for BBI + S4 modalities
 - Completeness only for some BI fragments
 ▷ Use of RM
- In this work
 - New Petri nets (called β -Petri nets)
 - New Petri net semantics for BI with completeness for BI
 ▷ Use of partial RM or RM with inconsistency.

Plan

- 1 BI Presentation
- 2 Petri nets with inconsistency
- 3 A new Petri net semantics for BI
- 4 An adequate semantics : soundness completeness
- 5 Accessibility / provability
- 6 Conclusions Perspectives

Plan

- 1 BI Presentation
- 2 Petri nets with inconsistency
- 3 A new Petri net semantics for BI
- 4 An adequate semantics : soundness completeness
- 5 Accessibility / provability
- 6 Conclusions Perspectives

BI Logic

Language

$$X ::= p \mid \top \mid \bot \mid I \mid X \land X \mid X \lor X \mid X \to X \mid X * X \mid X \twoheadrightarrow X$$
$$\neg \phi \equiv \phi \to \bot$$

Semantics (Galmiche-Méry-Pym 2005)

- Resource monoid with inconsistency: $\mathcal{M} = (R, \bullet, e, \pi, \sqsubseteq)$:
 - R set of resources
 - $e \in R$ and $\pi \in R$
 - ullet: $R \times R \to R$ (associative, commutativity, e is unit)
 - $\sqsubseteq \subseteq R \times R$ a preorder (reflexive, transitive)
 - $\pi \in R$ with $\forall r \in R$, $r \sqsubseteq \pi$ and $\forall r \in R$, $r \bullet \pi = \pi$
 - Compatibility: $\forall r_1, r_2, r_3 \in R \cdot r_1 \sqsubseteq r_2 \Rightarrow r_1 \bullet r_3 \sqsubseteq r_2 \bullet r_3$

BI Logic

Semantics

- Interpretation: $\llbracket \rrbracket : Prop \rightarrow \mathbb{P}(R)$
 - $\forall r, r' \in R \cdot r \sqsubseteq r' \text{ and } r \in \llbracket p \rrbracket \Rightarrow r' \in \llbracket p \rrbracket$
 - $\forall r \in R \cdot \pi \sqsubseteq r \Rightarrow r \in \llbracket p \rrbracket$
- Resource model: $\mathcal{K} = (\mathcal{M}, \llbracket \rrbracket, \models)$
 - $r \vDash p$ iff $r \in \llbracket p \rrbracket$
 - $r \models I$ iff $e \sqsubseteq r$
 - r \models \top always
 - $r \models \bot$ iff $\pi \sqsubseteq r$
 - $r \vDash \phi \land \psi$ iff $r \vDash \phi$ and $r \vDash \psi$
 - $r \vDash \phi \lor \psi$ iff $r \vDash \phi$ or $r \vDash \psi$
 - $r \vDash \phi \rightarrow \psi$ iff $\forall r' \in R \cdot r \sqsubseteq r' \Rightarrow r' \not\vDash \phi$ or $r' \vDash \psi$
 - $r \vDash \phi * \psi$ iff $\exists r', r'' \in R \cdot r' \bullet r'' \sqsubseteq r$ and $r' \vDash \phi$ and $r'' \vDash \psi$
 - $r \vDash \phi \twoheadrightarrow \psi$ iff $\forall r' \in R \cdot r' \vDash \phi \Rightarrow r \bullet r' \vDash \psi$

BI Logic

Validity / Monotonicity / Inconsistency

Definition (validity)

A formula ϕ is *RM-valid* (denoted $\vDash \phi$) if and only if $e \vDash \phi$ for any resource model.

Lemma (monotonicity)

If $r \vDash \phi$ and $r \sqsubseteq r'$ then $r' \vDash \phi$.

Lemma (inconsistency)

Let ϕ be a BI formula, $\pi \vDash \phi$.

Plan

- 1 BI Presentation
- 2 Petri nets with inconsistency
- 3 A new Petri net semantics for BI
- 4 An adequate semantics : soundness completeness
- 5 Accessibility / provability
- 6 Conclusions Perspectives

Presentation

- Every system has a finite memory
 - ▶ Some data can be "too big" to be encoded in memory
 - ► Error message: "Out of memory"
- Petri nets model systems
 - ▶ But no "out of Petri net memory"
 - ▶ Petri nets model *theoretic* systems but not *real* systems
 - ► Some markings have to be considered as errors (error-markings)
- Memory linearity
 - ▶ If a marking is not an error then its submarkings are not errors
- Loss of execution control
 - ▶ If a error occurs then the system cannot be controlled
 - ► An error-marking can access to all markings

Definition

- A Petri net with inconsistency (β-PN) $\mathcal{R} = (P, T, pre, post, \mathbb{M}^c(P), \beta)$
 - P is a set of places
 - T is a set of transitions
 - Markings are functions $P o \mathbb{N}$
 - $\mathbb{M}^{c}(P)$ is a set of marking called *consistent markings*:

CRP:
$$\forall M \in \mathbb{M}^c(P) \cdot (\forall p \in P \cdot N(p) \leq M(p)) \Rightarrow N \in \mathbb{M}^c(P)$$
 (memory linearity)

- β is a special element called *inconsistent marking*
 - β is not a marking $(\beta(p))$ undefined)
 - β represents an error occurring in the system
- pre and post are two functions $T \to \mathbb{M}^c(P)$.

Markings: addition/transition

Marking addition:

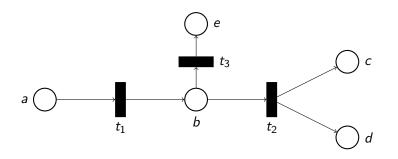
$$M+N=\left\{egin{array}{ll} O & ext{such that } O\in \mathbb{M}^c(P) ext{ and } M(p)+N(p)=O(p) \\ eta & ext{if } O ext{ does not exist} \end{array}
ight.$$

- ▶ Remark: $\beta + M = \beta$
- Marking transition relation (\Rightarrow):

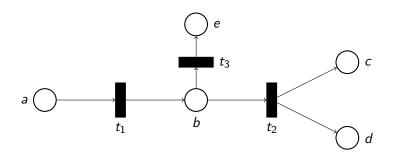
$$M \Rightarrow N \text{ iff } M = \beta \text{ or } (\exists t \in T \cdot \exists M' \in \mathbb{M}^c(P) \cdot M = pre(t) + M'$$

and $N = post(t) + M')$

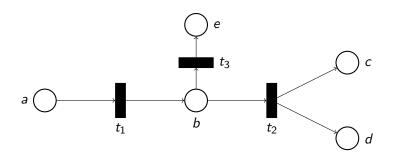
- ▶ Remark: $\beta \Rightarrow M$ (loss of execution control)
- \Rightarrow^* is the reflexive and transitive closure of \Rightarrow



- We suppose that $\mathbb{M}^c(P) = \{M \mid M(e) \leq 2\}$ (it verifies **CRP**)
- [a, b] + [a, c, e] = [a, a, b, c, e]
- $[a, e] + [e, e] = \beta$



- $pre(t_2) = [b]$ and $post(t_2) = [c, d]$
- $[a, b] = pre(t_2) + [a]$ and $[a, c, d] = post(t_2) + [a]$: $[a, b] \Rightarrow [a, c, d]$



-
$$[a, b, e] \Rightarrow^* [a, a, a, a]$$
:
 $[a, b, e] \Rightarrow [b, b, e] \Rightarrow [b, e, e] \Rightarrow \beta \Rightarrow [a, a, a, a]$

Some remarks

 \blacksquare β -PN are not equivalent to PN with a bound on tokens:

$$P = \{a, b, c\}$$

 $\mathbb{M}^{c}(P) = \{[a], [c], []\}$

- The bound is 0: $[a] \notin \mathbb{M}^c(P)$ which is absurd
- The bound is n > 0: $[\underline{b, b, ..., b}] \in \mathbb{M}^c(P)$ which is absurd
- β -PN are not equivalent to PN with a bound on places: $P = \{a, b\}$ $\mathbb{M}^c(P) = \{[\mathbf{a}, \mathbf{b}], [\mathbf{b}, \mathbf{b}], [a], [b], []\}$
 - bound(b) = 2 because $[b, b] \in \mathbb{M}^c(P)$ and $[b, b, b] \notin \mathbb{M}^c(P)$
 - bound(a) = 1 because $[a] \in \mathbb{M}^c(P)$ and $[a, a] \notin \mathbb{M}^c(P)$
 - But $[a, b, b] \notin \mathbb{M}^c(P)$

Plan

- 1 BI Presentation
- 2 Petri nets with inconsistency
- 3 A new Petri net semantics for BI
- 4 An adequate semantics : soundness completeness
- 5 Accessibility / provability
- 6 Conclusions Perspectives

$$\beta$$
-PN Semantics with $\mathbb{M}(P) = \mathbb{M}^c(P) \cup \{\beta\}$

- Interpretation: $i : Prop \to \mathbb{P}(\mathbb{M}(P))$
 - If $N \in i(p)$ and $M \Rightarrow^* N$ then $M \in i(p)$
 - $\beta \in i(p)$
- β -PN model: $\mathcal{K} = (\mathcal{M}, i, \Vdash)$, with $\mathcal{M} = (\mathbb{M}(P), +, [], \beta, \Leftarrow^*)$ built on a β -PN $\mathcal{R} = (P, T, pre, post, \mathbb{M}^c(P), \beta)$
 - $M \Vdash p$ iff $M \in i(p)$
 - M \Vdash \top always
 - $M \Vdash \bot \text{ iff } \beta \Leftarrow^* M$
 - *M* ⊩ I iff [] *⇐** *M*
 - $M \Vdash \phi \land \psi$ iff $M \Vdash \phi$ and $M \Vdash \psi$
 - $M \Vdash \phi \lor \psi$ iff $M \Vdash \phi$ or $M \Vdash \psi$
 - $M \Vdash \phi \to \psi$ iff $\forall M' \in \mathbb{M}(P)$ such that $M \Leftarrow^* M'$, $M' \not\models \phi$ or $M' \Vdash \psi$
 - $M \Vdash \phi * \psi$ iff $\exists M', M'' \in \mathbb{M}(P)$ such that $M' + M'' \Leftarrow^* M$ and $M' \Vdash \phi$ and $M'' \Vdash \psi$
 - $M \Vdash \phi \twoheadrightarrow \psi$ iff $\forall M' \in \mathbb{M}(P)$ such that $M' \Vdash \phi$, $M + M' \Vdash \psi$

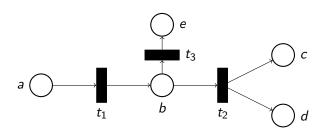
Validity / Comparison

Definition: validity

A formula ϕ is β -PN valid (denoted $\Vdash \phi$) if and only if [] $\Vdash \phi$ for any β -PN model.

PN semantics (O'Hearn et al.)	β -PN semantics			
"Standard" Petri nets	eta -Petri nets: $eta + M = eta$ and $eta \Rightarrow M$			
Resource monoids	Resource monoids with inconsistency			
Incomplete treatment of ot	Complete treatment of ot			
$M\Vdash \bot$ never	$M \Vdash \bot \text{ iff } \beta \Leftarrow^* M$			

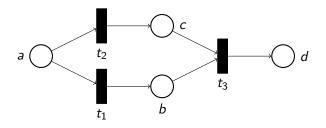
◆ロト ◆個ト ◆注 → 注 り へ ○



$$\mathbb{M}^{c}(P) = \{M \mid M(e) \leq 2\} \text{ and } i(p) = \{M \mid M \Rightarrow^{*} [p]\}$$

- $[b] \Vdash b$, $[a] \Vdash b$ and $\beta \Vdash b$
- $[a] \Vdash a \land b$, because $[a] \Vdash a$ and $[a] \Vdash b$
- $[a] \not\Vdash a * b$, but $[a, a] \vdash a * b$: $[a, a] \Rightarrow^* [a] + [b]$ and $[a] \vdash a$ and $[a] \vdash b$

Another example



$$i(p) = \{M \mid M \Rightarrow^* [p]\}$$

- [b] ⊢ c → d:
 c can be obtain if enough tokens are added to make d holds
- $[b] \not\Vdash c \rightarrow d$: $[a] \Rightarrow^* [b] \text{ and } [a] \Vdash c \text{ and } [a] \not\Vdash d$

Plan

- 1 BI Presentation
- 2 Petri nets with inconsistency
- 3 A new Petri net semantics for BI
- 4 An adequate semantics : soundness completeness
- 5 Accessibility / provability
- 6 Conclusions Perspectives

Soundness

Lemma

Let $\mathcal{R}=(P,T,\mathit{pre},\mathit{post},\mathbb{M}^c(P),\beta)$ be a β -PN. Let $\mathcal{M}=(\mathbb{M}(P),+,[],\beta,\Leftarrow^*)$. \mathcal{M} is a resource monoid with inconsistency

 $ightharpoonup CRP \Rightarrow + \text{ is associative}$

Lemma

Let $\mathcal{R} = (P, T, pre, post, \mathbb{M}^c(P), \beta)$ be a β -PN. Let $\mathcal{M} = (\mathbb{M}(P), +, [], \beta, \Leftarrow^*)$ and $\mathcal{K} = (\mathcal{M}, i, \Vdash)$ be a β -PN model. \mathcal{K} is a resource model.

Theorem (soundness)

Let a formula ϕ . If ϕ is RM-valid then ϕ is β -PN valid.

Completeness

How to transform RM-countermodels into β -PN countermodel

A labelled calculus

- Labelled tableaux calculus
 - *L_r* set of *labels* built from:
 - Constants $C_r = \{c_1, c_2, ...\} \cup \{1\}$
 - A function \circ on L_r (associative and commutative)
 - 1 is unit of o
 - Example: $c_1 \circ c_3 \circ c_1 = c_1 \circ c_1 \circ c_3 \circ 1$
 - Label constraints: $x \le y$ where x and y are labels
- \blacksquare A branch \mathcal{B} contains
 - Labelled formulae $S\phi: x$ where $S \in \{T, F\}$ and x is a label
 - Assertions = label constraints
 - x inconsistent label: $\exists y, z \in L_r \cdot T \perp : y \in \mathcal{B}$ and $y \circ z \leq x \in \overline{Ass}(\mathcal{B})$ (reflexive, transitive and compatible closure)

BI countermodels properties

- Countermodels $(R, \bullet, e, \pi, \sqsubseteq)$ extracted from a branch \mathcal{B} :
 - R is the set of all consistent labels of ${\cal B}$
 - -e = 1
 - π is a new element
 - $r_1 \bullet r_2 = \begin{cases} r_1 \circ r_2 & \text{if } r_1 \circ r_2 \text{ is consistent} \\ \pi & \text{else} \end{cases}$
- ▶ Resources are consistent labels: if $r \in R$ then r is of the form $c_{a_1} \circ ... \circ c_{a_n}$
- ▶ $x \circ 1 = x$. If a label $I = c_{a_1} \circ ... \circ c_{a_n}$ then I = 1 or $c_{a_i} \in C_r \setminus \{1\}$ for all 1 < i < n

Some definitions

Definition (atomic resource decomposition)

Let $r \in R \setminus \{\pi\}$. the atomic resource decomposition of r, noted ARD(r), is the empty multiset $\{\}$ if r is the label 1 and the multiset $\{c_{a_1},...,c_{a_n}\}$ if r is the label $c_{a_1} \circ ... \circ c_{a_n}$.

▶ $c_{a_i} \neq 1$ for all $1 \leq i \leq n$

Definition (atomic resource)

An atomic resource r is a resource s.T. $r \neq e$ and $ARD(r) = \{r\}$.

- Let $r \in R$
- r corresponds to a consistent label ($c_2 \circ c_2 \circ c_3 \circ c_4$ for example)
- c₂, c₃ and c₄ are consistent labels
 (property: sublabels of consistent label are consistent)
- $c_2, c_3, c_4 \in R$
- $ARD(r) = \{c_2, c_2, c_3, c_4\}$
- $ARD(c_2) = \{c_2\}$ (c_2 is an atomic resource)
- ► Atomic resources will be places
- ► Atomic resource decompositions will be markings

Countermodel transformation

- A function Θ : Let $\mathcal{K} = (\mathcal{M}, \llbracket - \rrbracket, \vDash)$, with $\mathcal{M} = (R, \bullet, e, \pi, \sqsubseteq)$ being a resource countermodel of a formula ϕ . $\Theta(\mathcal{K}) = (\mathcal{M}', i, \Vdash)$ where $\mathcal{M}' = (\mathbb{M}(P), +, \llbracket], \beta, \Leftarrow^*)$ is built on a β -PN $\mathcal{R} = (P, T, pre, post, \mathbb{M}^c(P), \beta)$, such that:
 - $P = \{r \in R \setminus \{\pi\} \mid r \text{ is an atomic resource}\}$
 - $\mathbb{M}^{c}(P) = \{ [r_{1}, ..., r_{n}] \mid r \in R \setminus \{\pi\} \text{ and } ARD(r) = \{r_{1}, ..., r_{n}\} \}$
 - $T = \{t_{r_j \to r_i} \mid r_i \sqsubseteq r_j \text{ and } r_i \neq \pi \text{ and } r_j \neq \pi\}$
 - $pre(t_{r_j \to r_i}) = [r_{j_1}, ..., r_{j_n}]$ where $ARD(r_j) = \{r_{j_1}, ..., r_{j_n}\}$
 - $post(t_{r_j
 ightarrow r_i}) = [r_{i_1},...,r_{i_n}]$ where $ARD(r_i) = \{r_{i_1},...,r_{i_n}\}$
 - β is a new element such that $\beta \not\in \mathbb{M}^c(P)$
 - $\forall p \in Prop, \ \forall M \in \mathbb{M}(P), \ M \in i(p) \ \text{iff} \ (M = \beta) \ \text{or} \ (M = [c_1, ..., c_m] \ \text{and} \ c_1 \bullet ... \bullet c_m \in \llbracket p \rrbracket)$

Completeness

Lemma

Let $\mathcal{K} = (\mathcal{M}, \llbracket - \rrbracket, \vDash)$, with $\mathcal{M} = (R, \bullet, e, \pi, \sqsubseteq)$, a resource countermodel of a formula ϕ . Let $\Theta(\mathcal{K}) = (\mathcal{M}', i, \Vdash)$ where $\mathcal{M}' = (\mathbb{M}(P), +, \llbracket], \beta, \Leftarrow^*)$ is built on β -PN $\mathcal{R} = (P, T, pre, post, \mathbb{M}^c(P), \beta)$.

The following properties are satisfied for any formula A:

- $1 \beta \Vdash A$
- 2 If $r \not\models A$ and $r \neq \pi$ and $ARD(r) = \{c_{r_1}, ..., c_{r_n}\}$ then $[c_{r_1}, ..., c_{r_n}] \not\models A$
- If $r \models A$ and $r \neq \pi$ and $ARD(r) = \{c_{r_1}, ..., c_{r_n}\}$ then $[c_{r_1}, ..., c_{r_n}] \Vdash A$

Theorem (completeness)

Let a formula ϕ . If ϕ is β -PN valid then ϕ is RM-valid.

An example of countermodel transformation

- We consider the formula $((A * B) \land A) \twoheadrightarrow (A \rightarrow B)$
- This formula is not valid
 - ► Countermodel extracted with BI tableaux method:

$$\mathcal{K} = (\mathcal{M}, \llbracket - \rrbracket, \vDash)$$
 where $\mathcal{M} = (R, \bullet, e, \pi, \sqsubseteq)$

- $R = \{e, c_1, c_2, c_3, c_4, c_3 \circ c_4, \pi\}$:
 - Atomic resources: c_1 , c_2 , c_3 and c_4
 - ▶ Four places obtained by Θ : $P = \{c_1, c_2, c_3, c_4\}$
 - $\mathbb{M}^{c}(P) = \{[], [c_1], [c_2], [c_3], [c_4], [c_3, c_4]\}$ Let us note that $ARD(c_3 \circ c_4) = \{c_3, c_4\}$

An example of countermodel transformation

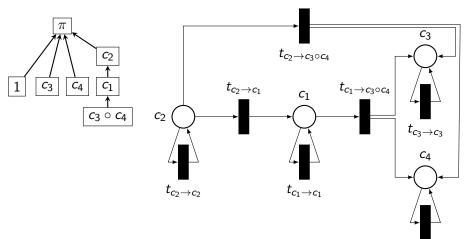
- [[-]] is defined by: [[A]] = { π , c_1 , c_2 , c_3 } and [[B]] = { π , c_4 }:

 $i(A) = {\beta, [c_1], [c_2], [c_3]}$ $i(B) = {\beta, [c_4]}$
- is defined by:

•	е	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	C4	<i>c</i> ₃ ∘ <i>c</i> ₄	π
e	е	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	C4	<i>c</i> ₃ ∘ <i>c</i> ₄	π
<i>c</i> ₁	<i>c</i> ₁	π	π	π	π	π	π
<i>c</i> ₂	<i>c</i> ₂	π	π	π	π	π	π
<i>c</i> ₃	<i>c</i> ₃	π	π	π	<i>c</i> ₃ ∘ <i>c</i> ₄	π	π
C4	C4	π	π	<i>c</i> ₃ ∘ <i>c</i> ₄	π	π	π
<i>c</i> ₃ ∘ <i>c</i> ₄	<i>c</i> ₃ ∘ <i>c</i> ₄	π	π	π	π	π	π
π	π	π	π	π	π	π	π

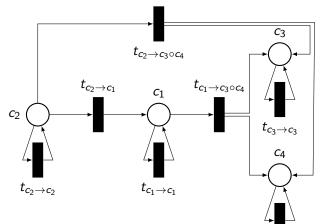
An example of countermodel transformation

■ ☐ where reflexivity and transitivity is not represented



An example of countermodel transformation

- $\phi = ((A * B) \land A) (A \rightarrow B)$: $[c_1] \Vdash (A * B) \land A \text{ and } [c_1] + [] \not\Vdash A \rightarrow B$
- $i(A) = \{\beta, [c_1], [c_2], [c_3]\}$ and $i(B) = \{\beta, [c_4]\}$



Plan

- 1 BI Presentation
- 2 Petri nets with inconsistency
- 3 A new Petri net semantics for BI
- 4 An adequate semantics : soundness completeness
- 5 Accessibility / provability
- 6 Conclusions Perspectives

Accessibility / provability

Accessibility / provability: $M_1 \Rightarrow^* M_2$ iff $[] \Vdash \widehat{M_1} \twoheadrightarrow \widehat{M_2}$

- Interpretation restriction: $i_{\triangleleft}(p) = \{M \mid M \Rightarrow^* [p]\}$
- Transformation of markings into formulae:

$$\widehat{M} = \begin{cases} & \perp & \text{si } M = \beta \\ & \text{I} & \text{si } M = [] \\ & r_1 * \dots * r_m & \text{si } M = [r_1, \dots, r_m] \end{cases}$$

■ Definition of closure: $\downarrow(M) = \{N \in \mathbb{M}(P) \mid N \Rightarrow^* M\}$

Theorem

Let $\mathcal{R}=(P,T,\mathit{pre},\mathit{post},\mathbb{M}^c(P),\beta)$ be a β -PN and $\mathcal{M}=(\mathbb{M}(P),+,[],\beta,\Leftarrow^*)$ and $\mathcal{K}=(\mathcal{M},\mathit{i}_{\lhd},\Vdash)$. For all markings M_1 and M_2 we have $\mathit{M}_1\Rightarrow^*\mathit{M}_2$ iff $[]\Vdash\widehat{\mathit{M}}_1\twoheadrightarrow\widehat{\mathit{M}}_2$.

Plan

- 1 BI Presentation
- 2 Petri nets with inconsistency
- 3 A new Petri net semantics for BI
- 4 An adequate semantics : soundness completeness
- 5 Accessibility / provability
- 6 Conclusions Perspectives

Conclusions - Perspectives

- New Petri nets with inconsistency (β-PN)
 - β corresponds to error markings
 - Memory linearity
 - Loss of execution control
- A transformation of RM countermodels into β -PN countermodels
- Soundness and completeness of β -Petri net semantics for BI
- Correspondence between accessibility and provability
- Future works: Petri net semantics for modal extensions of BI and their properties.