Petri net semantics for Bl revisited

J.R. Courtault - D. Galmiche

ANR DynRes Meeting
LSV - ENS Cachan
June 2012

Introduction

Resource logics

- Some resource logics
- Linear Logic LL (production / consumption) (Girard 1987)
- Logic of Bunched Implications BI (separation / sharing) (Pym 2002)
■ BI language $=\left\{\begin{array}{l}\wedge, \vee, \rightarrow, \top, \perp \text { (additives / IL) } \\ *, \rightarrow, \mathrm{I}(\text { multiplicatives } / \mathrm{MILL})\end{array}\right.$
- BI calculi
- Bunched sequent calculus (Pym 2002)
- Labelled tableaux calculus (Galmiche-Méry-Pym 2005)
- BI semantics

■ Algebraic / topological / categorical semantics

- Kripke semantics: resource monoid (RM)
- with an incomplete treatment of \perp (RM)
- with a complete treatment of \perp (partial RM / RM with inconsistency)
- Can we define a Petri net semantics for BI?

Introduction

Resource logics and Petri net semantics

- Petri net semantics for ILL (Engberg-Winskel 1990)
- $A \&(B \oplus C) \dashv(A \& B) \oplus(A \& C)$ does not hold in ILL
- Accessibility / provability $\left(M \rightarrow M^{\prime}\right.$ iff $\left.\widehat{M} \multimap \widehat{M^{\prime}}\right)$

■ Completeness only for some ILL fragments (Engberg-Winskel 1997)

- Petri net semantics for $\mathbf{B I}$ (O'Hearn-Yang 1999)
- $A \wedge(B \vee C) \dashv \vdash(A \wedge B) \vee(A \wedge C)$ holds in $\mathbf{B I}$
- Accessibility / provability studied for BBI $+\mathbf{S 4}$ modalities
- Completeness only for some BI fragments \triangleright Use of RM
- In this work
- New Petri nets (called β-Petri nets)

■ New Petri net semantics for BI with completeness for BI \triangleright Use of partial RM or RM with inconsistency.

Plan

1 BI －Presentation

2 Petri nets with inconsistency

3 A new Petri net semantics for BI

4 An adequate semantics：soundness－completeness

5 Accessibility／provability

6 Conclusions－Perspectives

Plan

1 BI - Presentation

2 Petri nets with inconsistency

3 A new Petri net semantics for BI

4 An adequate semantics: soundness - completeness

5 Accessibility / provability

6 Conclusions - Perspectives

BI Logic

Language

$$
\begin{gathered}
X::=p|\top| \perp|\mathrm{I}| X \wedge X|X \vee X| X \rightarrow X|X * X| X \rightarrow X \\
\neg \phi \equiv \phi \rightarrow \perp
\end{gathered}
$$

Semantics (Galmiche-Méry-Pym 2005)
■ Resource monoid with inconsistency: $\mathcal{M}=(R, \bullet, e, \pi, \sqsubseteq)$:

- R set of resources
- $e \in R$ and $\pi \in R$
- • : $R \times R \rightarrow R$ (associative, commutativity, e is unit)
- $\subseteq \subseteq R \times R$ a preorder (reflexive, transitive)
- $\pi \in R$ with $\forall r \in R, r \sqsubseteq \pi$ and $\forall r \in R, r \bullet \pi=\pi$
- Compatibility: $\forall r_{1}, r_{2}, r_{3} \in R \cdot r_{1} \sqsubseteq r_{2} \Rightarrow r_{1} \bullet r_{3} \sqsubseteq r_{2} \bullet r_{3}$

BI Logic

Semantics

■ Interpretation: $\llbracket-\rrbracket: \operatorname{Prop} \rightarrow \mathbb{P}(R)$

- $\forall r, r^{\prime} \in R \cdot r \sqsubseteq r^{\prime}$ and $r \in \llbracket p \rrbracket \Rightarrow r^{\prime} \in \llbracket p \rrbracket$
- $\forall r \in R \cdot \pi \sqsubseteq r \Rightarrow r \in \llbracket p \rrbracket$
- Resource model: $\mathcal{K}=(\mathcal{M}, \llbracket-\rrbracket, \vDash)$
- $r \vDash p$ iff $r \in \llbracket p \rrbracket$
- $r \vDash$ I iff $e \sqsubseteq r$
- $r \vDash$ T always
- $r \vDash \perp$ iff $\pi \sqsubseteq r$
- $r \vDash \phi \wedge \psi$ iff $r \vDash \phi$ and $r \vDash \psi$
- $r \vDash \phi \vee \psi$ iff $r \vDash \phi$ or $r \vDash \psi$
- $r \vDash \phi \rightarrow \psi$ iff $\forall r^{\prime} \in R \cdot r \sqsubseteq r^{\prime} \Rightarrow r^{\prime} \not \forall \phi$ or $r^{\prime} \vDash \psi$
- $r \vDash \phi * \psi$ iff $\exists r^{\prime}, r^{\prime \prime} \in R \cdot r^{\prime} \bullet r^{\prime \prime} \sqsubseteq r$ and $r^{\prime} \vDash \phi$ and $r^{\prime \prime} \vDash \psi$
- $r \vDash \phi \rightarrow \psi$ iff $\forall r^{\prime} \in R \cdot r^{\prime} \vDash \phi \Rightarrow r \bullet r^{\prime} \vDash \psi$

BI Logic

Validity / Monotonicity / Inconsistency

Definition (validity)

A formula ϕ is $R M$-valid (denoted $\vDash \phi$) if and only if $e \vDash \phi$ for any resource model.

Lemma (monotonicity)
If $r \vDash \phi$ and $r \sqsubseteq r^{\prime}$ then $r^{\prime} \vDash \phi$.

Lemma (inconsistency)
Let ϕ be a BI formula, $\pi \vDash \phi$.

Plan

1 BI - Presentation

2 Petri nets with inconsistency

3 A new Petri net semantics for BI

4 An adequate semantics: soundness - completeness

5 Accessibility / provability

6 Conclusions - Perspectives

Petri nets with inconsistency

Presentation

- Every system has a finite memory
- Some data can be "too big" to be encoded in memory
- Error message: "Out of memory"
- Petri nets model systems
- But no "out of Petri net memory"
- Petri nets model theoretic systems but not real systems
- Some markings have to be considered as errors (error-markings)
- Memory linearity
- If a marking is not an error then its submarkings are not errors
- Loss of execution control
- If a error occurs then the system cannot be controled
- An error-marking can access to all markings \qquad

Petri nets with inconsistency

Definition

- A Petri net with inconsistency (β-PN) $\mathcal{R}=\left(P, T\right.$, pre, post, $\left.\mathbb{M}^{c}(P), \beta\right)$
- P is a set of places
- T is a set of transitions
- Markings are functions $P \rightarrow \mathbb{N}$
- $\mathbb{M}^{c}(P)$ is a set of marking called consistent markings:

CRP: $\forall M \in \mathbb{M}^{c}(P) \cdot(\forall p \in P \cdot N(p) \leq M(p)) \Rightarrow N \in \mathbb{M}^{c}(P)$ (memory linearity)

- β is a special element called inconsistent marking
- β is not a marking ($\beta(p)$ undefined)
- β represents an error occurring in the system
- pre and post are two functions $T \rightarrow \mathbb{M}^{c}(P)$.

Petri nets with inconsistency

Markings: addition/transition

- Marking addition:

$$
M+N= \begin{cases}O & \text { such that } O \in \mathbb{M}^{c}(P) \text { and } M(p)+N(p)=O(p) \\ \beta & \text { if } O \text { does not exist }\end{cases}
$$

- Remark: $\beta+M=\beta$
- Marking transition relation (\Rightarrow) :

$$
\begin{gathered}
M \Rightarrow N \text { iff } M=\beta \text { or }\left(\exists t \in T \cdot \exists M^{\prime} \in \mathbb{M}^{c}(P) \cdot M=\operatorname{pre}(t)+M^{\prime}\right. \\
\text { and } \left.N=\operatorname{post}(t)+M^{\prime}\right)
\end{gathered}
$$

- Remark: $\beta \Rightarrow M$ (loss of execution control)
\Rightarrow^{*} is the reflexive and transitive closure of \Rightarrow

Petri nets with inconsistency

An example

- We suppose that $\mathbb{M}^{c}(P)=\{M \mid M(e) \leq 2\}$ (it verifies CRP)
$-[a, b]+[a, c, e]=[a, a, b, c, e]$
$-[a, e]+[e, e]=\beta$

Petri nets with inconsistency

An example

- $\operatorname{pre}\left(t_{2}\right)=[b]$ and $\operatorname{post}\left(t_{2}\right)=[c, d]$
$-[a, b]=\operatorname{pre}\left(t_{2}\right)+[a]$ and $[a, c, d]=\operatorname{post}\left(t_{2}\right)+[a]:$
$[a, b] \Rightarrow[a, c, d]$

Petri nets with inconsistency

An example

$-[a, b, e] \Rightarrow^{*}[a, a, a, a]:$

$$
[a, b, e] \Rightarrow[b, b, e] \Rightarrow[b, e, e] \Rightarrow \beta \Rightarrow[a, a, a, a]
$$

Petri nets with inconsistency

Some remarks

■ $\beta-\mathrm{PN}$ are not equivalent to PN with a bound on tokens:

$$
P=\{a, b, c\}
$$

$$
\mathbb{M}^{c}(P)=\{[a],[c],[]\}
$$

- The bound is $0:[a] \notin \mathbb{M}^{c}(P)$ which is absurd
- The bound is $n>0:[\underbrace{b, b, \ldots, b}_{n \text { times }}] \in \mathbb{M}^{c}(P)$ which is absurd
- $\beta-\mathrm{PN}$ are not equivalent to PN with a bound on places:

$$
P=\{a, b\}
$$

$$
\mathbb{M}^{c}(P)=\{[\mathbf{a}, \mathbf{b}],[\mathbf{b}, \mathbf{b}],[a],[b],[]\}
$$

- bound $(b)=2$ because $[b, b] \in \mathbb{M}^{c}(P)$ and $[b, b, b] \notin \mathbb{M}^{c}(P)$
- bound $(a)=1$ because $[a] \in \mathbb{M}^{c}(P)$ and $[a, a] \notin \mathbb{M}^{c}(P)$
- But $[a, b, b] \notin \mathbb{M}^{c}(P)$

Plan

1 BI - Presentation

2 Petri nets with inconsistency

3 A new Petri net semantics for BI

4 An adequate semantics : soundness - completeness

5 Accessibility / provability

6 Conclusions - Perspectives

Petri net semantics for Bl

β-PN Semantics with $\mathbb{M}(P)=\mathbb{M}^{c}(P) \cup\{\beta\}$

- Interpretation: $i: \operatorname{Prop} \rightarrow \mathbb{P}(\mathbb{M}(P))$
- If $N \in i(p)$ and $M \Rightarrow^{*} N$ then $M \in i(p)$
- $\beta \in i(p)$

■ β - PN model: $\mathcal{K}=(\mathcal{M}, i, \Vdash)$, with $\mathcal{M}=\left(\mathbb{M}(P),+,[], \beta, \Leftarrow^{*}\right)$ built on a β-PN $\mathcal{R}=\left(P, T\right.$, pre, post, $\left.\mathbb{M}^{c}(P), \beta\right)$

- $M \Vdash p$ iff $M \in i(p)$
- $M \Vdash$ T always
- $M \Vdash \perp$ iff $\beta \Leftarrow \Leftarrow^{*} M$
- $M \Vdash$ I iff []$\Leftarrow^{*} M$
- $M \Vdash \phi \wedge \psi$ iff $M \Vdash \phi$ and $M \Vdash \psi$
- $M \Vdash \phi \vee \psi$ iff $M \Vdash \phi$ or $M \Vdash \psi$
- $M \Vdash \phi \rightarrow \psi$ iff $\forall M^{\prime} \in \mathbb{M}(P)$ such that $M \Leftarrow{ }^{*} M^{\prime}, M^{\prime} \Vdash \phi$ or $M^{\prime} \Vdash \psi$
- $M \Vdash \phi * \psi$ iff $\exists M^{\prime}, M^{\prime \prime} \in \mathbb{M}(P)$ such that $M^{\prime}+M^{\prime \prime} \Leftarrow^{*} M$ and $M^{\prime} \Vdash \phi$ and $M^{\prime \prime} \Vdash \psi$
- $M \Vdash \phi \rightarrow \psi$ iff $\forall M^{\prime} \in \mathbb{M}(P)$ such that $M^{\prime} \Vdash \phi, M+M^{\prime} \Vdash \psi$

Petri net semantics for BI

Validity / Comparison

Definition: validity

A formula ϕ is $\beta-P N$ valid (denoted $\Vdash \phi$) if and only if []$\Vdash \phi$ for any β-PN model.

PN semantics (O'Hearn et al.)

"Standard" Petri nets

Resource monoids

Incomplete treatment of \perp
$M \Vdash \perp$ never
β-PN semantics
β-Petri nets: $\beta+M=\beta$ and $\beta \Rightarrow M$

Resource monoids with inconsistency

Complete treatment of \perp

$$
M \Vdash \perp \text { iff } \beta \Leftarrow^{*} M
$$

Petri net semantics for Bl

An example

$$
\mathbb{M}^{c}(P)=\{M \mid M(e) \leq 2\} \text { and } i(p)=\left\{M \mid M \Rightarrow^{*}[p]\right\}
$$

- $[b] \Vdash b,[a] \Vdash b$ and $\beta \Vdash b$
- $[a] \Vdash a$
- $[a] \Vdash a \wedge b$, because $[a] \Vdash a$ and $[a] \Vdash b$
- [a] $\Vdash a * b$, but $[a, a] \Vdash a * b$:
$[a, a] \Rightarrow^{*}[a]+[b]$ and $[a] \Vdash a$ and $[a] \Vdash b$

Petri net semantics for Bl

Another example

$$
i(p)=\left\{M \mid M \Rightarrow^{*}[p]\right\}
$$

- $[b] \Vdash c \rightarrow d:$
c can be obtain if enough tokens are added to make d holds
- $[b] \| c \rightarrow d$:
$[a] \Rightarrow^{*}[b]$ and $[a] \Vdash c$ and $[a] \Vdash d$

Plan

1 BI －Presentation

2 Petri nets with inconsistency

3 A new Petri net semantics for BI

4 An adequate semantics：soundness－completeness

5 Accessibility／provability

6 Conclusions－Perspectives

An adequate semantics

Soundness

Lemma

Let $\mathcal{R}=\left(P, T\right.$, pre, post, $\left.\mathbb{M}^{c}(P), \beta\right)$ be a β-PN. Let $\mathcal{M}=\left(\mathbb{M}(P),+,[], \beta, \Leftarrow^{*}\right) . \mathcal{M}$ is a resource monoid with inconsistency

- $\mathrm{CRP} \Rightarrow+$ is associative

Lemma

Let $\mathcal{R}=\left(P, T\right.$, pre, post, $\left.\mathbb{M}^{c}(P), \beta\right)$ be a β-PN. Let $\mathcal{M}=\left(\mathbb{M}(P),+,[], \beta, \Leftarrow^{*}\right)$ and $\mathcal{K}=(\mathcal{M}, i, \Vdash)$ be a β-PN model. \mathcal{K} is a resource model.

Theorem (soundness)

Let a formula ϕ. If ϕ is RM-valid then ϕ is β-PN valid.

An adequate semantics

Completeness

How to transform RM-countermodels into β-PN countermodel

A labelled calculus

- Labelled tableaux calculus
- L_{r} set of labels built from:
- Constants $C_{r}=\left\{c_{1}, c_{2}, \ldots\right\} \cup\{1\}$
- A function \circ on L_{r} (associative and commutative)
- 1 is unit of \circ
- Example: $c_{1} \circ c_{3} \circ c_{1}=c_{1} \circ c_{1} \circ c_{3} \circ 1$
- Label constraints: $x \leq y$ where x and y are labels
- A branch \mathcal{B} contains
- Labelled formulae $S \phi$: x where $S \in\{T, F\}$ and x is a label
- Assertions = label constraints
- x inconsistent label: $\exists y, z \in L_{r} \cdot T \perp: y \in \mathcal{B}$ and $y \circ z \leq x \in \overline{\operatorname{Ass}}(\mathcal{B})$ (reflexive, transitive and compatible closure)

An adequate semantics

BI countermodels properties

■ Countermodels $(R, \bullet, e, \pi, \sqsubseteq)$ extracted from a branch \mathcal{B} :

- R is the set of all consistent labels of \mathcal{B}
- $e=1$
- π is a new element
$-r_{1} \bullet r_{2}=\left\{\begin{array}{cl}r_{1} \circ r_{2} & \text { if } r_{1} \circ r_{2} \text { is consistent } \\ \pi & \text { else }\end{array}\right.$
- Resources are consistent labels:
if $r \in R$ then r is of the form $c_{a_{1}} \circ \ldots \circ c_{a_{n}}$
- $x \circ 1=x$.

If a label $I=c_{a_{1}} \circ \ldots \circ C_{a_{n}}$ then $I=1$ or $C_{a_{i}} \in C_{r} \backslash\{1\}$ for all $1 \leq i \leq n$

An adequate semantics

Some definitions

Definition (atomic resource decomposition)

Let $r \in R \backslash\{\pi\}$. the atomic resource decomposition of r, noted $A R D(r)$, is the empty multiset $\}$ if r is the label 1 and the multiset $\left\{c_{a_{1}}, \ldots, c_{a_{n}}\right\}$ if r is the label $c_{a_{1}} \circ \ldots \circ c_{a_{n}}$.

- $c_{a_{i}} \neq 1$ for all $1 \leq i \leq n$

Definition (atomic resource)

An atomic resource r is a resource s.T. $r \neq e$ and $\operatorname{ARD}(r)=\{r\}$.

An adequate semantics

An example

- Let $r \in R$
- r corresponds to a consistent label $\left(c_{2} \circ c_{2} \circ c_{3} \circ c_{4}\right.$ for example)
- c_{2}, c_{3} and c_{4} are consistent labels (property: sublabels of consistent label are consistent)
- $c_{2}, c_{3}, c_{4} \in R$
- $A R D(r)=\left\{c_{2}, c_{2}, c_{3}, c_{4}\right\}$
- $\operatorname{ARD}\left(c_{2}\right)=\left\{c_{2}\right\}$ (c_{2} is an atomic resource)
- Atomic resources will be places
- Atomic resource decompositions will be markings

An adequate semantics

Countermodel transformation

- A function Θ :

Let $\mathcal{K}=(\mathcal{M}, \llbracket-\rrbracket, \models)$, with $\mathcal{M}=(R, \bullet, e, \pi, \sqsubseteq)$ being a resource countermodel of a formula $\phi . \Theta(\mathcal{K})=\left(\mathcal{M}^{\prime}, i, \Vdash\right)$ where $\mathcal{M}^{\prime}=\left(\mathbb{M}(P),+,[], \beta, \Leftarrow^{*}\right)$ is built on a β-PN $\mathcal{R}=\left(P, T\right.$, pre, post, $\left.\mathbb{M}^{c}(P), \beta\right)$, such that:

- $P=\{r \in R \backslash\{\pi\} \mid r$ is an atomic resource $\}$
- $\mathbb{M}^{c}(P)=\left\{\left[r_{1}, \ldots, r_{n}\right] \mid r \in R \backslash\{\pi\}\right.$ and $\left.A R D(r)=\left\{r_{1}, \ldots, r_{n}\right\}\right\}$
- $T=\left\{t_{r_{j} \rightarrow r_{i}} \mid r_{i} \sqsubseteq r_{j}\right.$ and $r_{i} \neq \pi$ and $\left.r_{j} \neq \pi\right\}$
- $\operatorname{pre}\left(t_{r_{j} \rightarrow r_{i}}\right)=\left[r_{j_{1}}, \ldots, r_{j_{n}}\right]$ where $\operatorname{ARD}\left(r_{j}\right)=\left\{r_{j_{1}}, \ldots, r_{j_{n}}\right\}$
- $\operatorname{post}\left(t_{r_{j} \rightarrow r_{i}}\right)=\left[r_{i_{1}}, \ldots, r_{i_{n}}\right]$ where $\operatorname{ARD}\left(r_{i}\right)=\left\{r_{i_{1}}, \ldots, r_{i_{n}}\right\}$
- β is a new element such that $\beta \notin \mathbb{M}^{c}(P)$
- $\forall p \in \operatorname{Prop}, \forall M \in \mathbb{M}(P), M \in i(p)$ iff $(M=\beta)$ or $\left(M=\left[c_{1}, \ldots, c_{m}\right]\right.$ and $\left.c_{1} \bullet \ldots \bullet c_{m} \in \llbracket p \rrbracket\right)$

An adequate semantics

Completeness

Lemma

Let $\mathcal{K}=(\mathcal{M}, \llbracket-\rrbracket, \vDash)$, with $\mathcal{M}=(R, \bullet, e, \pi, \sqsubseteq)$, a resource countermodel of a formula ϕ. Let $\Theta(\mathcal{K})=\left(\mathcal{M}^{\prime}, i, \Vdash\right)$ where $\mathcal{M}^{\prime}=\left(\mathbb{M}(P),+,[], \beta, \Leftarrow^{*}\right)$ is built on $\beta-\mathbb{P N} \mathcal{R}=(P, T$, pre, post, $\left.\mathbb{M}^{c}(P), \beta\right)$.
The following properties are satisfied for any formula A :
$1 \beta \Vdash A$
2 If $r \nexists A$ and $r \neq \pi$ and $A R D(r)=\left\{c_{r_{1}}, \ldots, c_{r_{n}}\right\}$ then $\left[c_{r_{1}}, \ldots, c_{r_{n}}\right] \Vdash A$
3 If $r \vDash A$ and $r \neq \pi$ and $\operatorname{ARD}(r)=\left\{c_{r_{1}}, \ldots, c_{r_{n}}\right\}$ then $\left[c_{r_{1}}, \ldots, c_{r_{n}}\right] \Vdash A$

Theorem (completeness)

Let a formula ϕ. If ϕ is β-PN valid then ϕ is RM-valid.

An adequate semantics

An example of countermodel transformation

- We consider the formula $((A * B) \wedge A) \rightarrow *(A \rightarrow B)$
- This formula is not valid
- Countermodel extracted with BI tableaux method:
$\mathcal{K}=(\mathcal{M}, \llbracket-\rrbracket, \vDash)$ where $\mathcal{M}=(R, \bullet, e, \pi, \sqsubseteq)$
- $R=\left\{e, c_{1}, c_{2}, c_{3}, c_{4}, c_{3} \circ c_{4}, \pi\right\}$:
- Atomic resources: c_{1}, c_{2}, c_{3} and c_{4}
- Four places obtained by Θ : $P=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$
$-\mathbb{M}^{c}(P)=\left\{[],\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right],\left[c_{4}\right],\left[c_{3}, c_{4}\right]\right\}$ Let us note that $\operatorname{ARD}\left(c_{3} \circ c_{4}\right)=\left\{c_{3}, c_{4}\right\}$

An adequate semantics

An example of countermodel transformation

$\square \llbracket-\rrbracket$ is defined by: $\llbracket A \rrbracket=\left\{\pi, c_{1}, c_{2}, c_{3}\right\}$ and $\llbracket B \rrbracket=\left\{\pi, c_{4}\right\}$:

$$
\begin{aligned}
-i(A) & =\left\{\beta,\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right]\right\} \\
-i(B) & =\left\{\beta,\left[c_{4}\right]\right\}
\end{aligned}
$$

- - is defined by:

\bullet	e	c_{1}	c_{2}	c_{3}	c_{4}	$c_{3} \circ c_{4}$	π
e	e	c_{1}	c_{2}	c_{3}	c_{4}	$c_{3} \circ c_{4}$	π
c_{1}	c_{1}	π	π	π	π	π	π
c_{2}	c_{2}	π	π	π	π	π	π
c_{3}	c_{3}	π	π	π	$c_{3} \circ c_{4}$	π	π
c_{4}	c_{4}	π	π	$c_{3} \circ c_{4}$	π	π	π
$c_{3} \circ c_{4}$	$c_{3} \circ c_{4}$	π	π	π	π	π	π
π							

An adequate semantics

An example of countermodel transformation

■ \sqsubseteq where reflexivity and transitivity is not represented

An adequate semantics

An example of countermodel transformation

- $\phi=((A * B) \wedge A)-*(A \rightarrow B)$:
$\left[c_{1}\right] \Vdash(A * B) \wedge A$ and $\left[c_{1}\right]+[] \Vdash A \rightarrow B$
$-i(A)=\left\{\beta,\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right]\right\}$ and $i(B)=\left\{\beta,\left[c_{4}\right]\right\}$

Plan

1 BI - Presentation

2 Petri nets with inconsistency

3 A new Petri net semantics for BI

4 An adequate semantics: soundness - completeness

5 Accessibility / provability

6 Conclusions - Perspectives

Accessibility / provability

Accessibility / provability: $M_{1} \Rightarrow^{*} M_{2}$ iff [] $\Vdash \widehat{M_{1}} * \widehat{M_{2}}$

- Interpretation restriction: $i_{\varangle}(p)=\left\{M \mid M \Rightarrow^{*}[p]\right\}$
- Transformation of markings into formulae:

$$
\widehat{M}=\left\{\begin{array}{cl}
\perp & \text { si } M=\beta \\
\mathrm{I} & \text { si } M=[] \\
r_{1} * \ldots * r_{m} & \text { si } M=\left[r_{1}, \ldots, r_{m}\right]
\end{array}\right.
$$

■ Definition of closure: $\downarrow(M)=\left\{N \in \mathbb{M}(P) \mid N \Rightarrow^{*} M\right\}$

Theorem

Let $\mathcal{R}=\left(P, T\right.$, pre, post, $\left.\mathbb{M}^{c}(P), \beta\right)$ be a β - PN and $\mathcal{M}=$ $\left(\mathbb{M}(P),+,[], \beta, \Leftarrow^{*}\right)$ and $\mathcal{K}=\left(\mathcal{M}, i_{\varangle}, \Vdash_{-}\right)$. For all markings M_{1} and M_{2} we have $M_{1} \Rightarrow^{*} M_{2}$ iff []$\Vdash \widehat{M_{1}} * \widehat{M_{2}}$.

Plan

1 BI - Presentation

2 Petri nets with inconsistency

3 A new Petri net semantics for BI

4 An adequate semantics: soundness - completeness

5 Accessibility / provability

6 Conclusions - Perspectives

Conclusions - Perspectives

■ New Petri nets with inconsistency (β-PN)

- β corresponds to error markings
- Memory linearity
- Loss of execution control
- A transformation of RM countermodels into β - PN countermodels

■ Soundness and completeness of β-Petri net semantics for BI

- Correspondence between accessibility and provability
- Future works:

Petri net semantics for modal extensions of BI and their properties.

