Propositional Separation Logic in PSPACE A classical result

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA

DYNRES Kick-off Meeting, February 2012

Separation logic

- Introduced by Reynolds, Pym and O'Hearn.
- Reasoning about the heap with a strong form of locality built-in.
- $\mathcal{A} * \mathcal{B}$ is true whenever the heap can be divided into two disjoint parts, one satisfies \mathcal{A} , the other one \mathcal{B} .
- *A*-**B* is true whenever *A* is true for a (fresh) disjoint heap,
 B is true for the combined heap.

Modelling memory states

- Set of variables $\label{eq:var} \texttt{Var} = \{\texttt{x},\texttt{y},\texttt{z},\ldots\}.$
- Set of selectors/labels Lab.
- Set of values $Val = \mathbb{N} \uplus \{nil\}.$
- Set of stores: $\mathcal{S} \stackrel{\text{\tiny def}}{=} \operatorname{Var} \to \operatorname{Val}$.
- Set of heaps: $\mathcal{H} \stackrel{\text{def}}{=} \mathbb{N} \rightharpoonup_{fin} (\text{Lab} \rightharpoonup_{fin+} \text{Val}).$

Memory state (s, h)

Disjoint heaps

- h_1 and h_2 are disjoint whenever $dom(h_1) \cap dom(h_2) = \emptyset$. Notation: $h_1 \perp h_2$.
- Disjointness does not concern records.
- Disjoint union $h_1 * h_2$ whenever $h_1 \perp h_2$.
- Disjoint heap graphs (with a unique selector and Val = N):

Syntax

• Expressions

e ::= x | null

Atomic formulae

$$\pi ::= \mathbf{e} = \mathbf{e}' \ | \ \mathbf{x} \stackrel{\prime}{\hookrightarrow} \mathbf{e} \ | \ \mathtt{emp}$$

- $\mathbf{x} \hookrightarrow e_1, e_2$ can be encoded with $\mathbf{x} \stackrel{1}{\hookrightarrow} e_1 \wedge \mathbf{x} \stackrel{2}{\hookrightarrow} e_2$.
- Formulae:

$$\mathcal{A} ::= \pi \mid \ \mathcal{A} \land \mathcal{B} \mid \ \neg \mathcal{A} \mid \ \mathcal{A} \ast \mathcal{B} \mid \ \mathcal{A} \neg \ast \mathcal{B}$$

Semantics

- $(s, h) \models emp \text{ iff } dom(h) = \emptyset.$
- $(s,h) \models e = e'$ iff $\llbracket e \rrbracket_s = \llbracket e' \rrbracket_s$, with $\llbracket x \rrbracket_s = s(x)$ and $\llbracket \text{null} \rrbracket_s = nil$.
- $(s,h) \models \mathbf{x} \stackrel{l}{\hookrightarrow} e'$ iff $\llbracket \mathbf{x} \rrbracket_s \in \mathbb{N}$ and $\llbracket \mathbf{x} \rrbracket \in \operatorname{dom}(h)$ and $h(s(\mathbf{x}))(l) = \llbracket e' \rrbracket_s$.
- $(s,h) \models \mathcal{A}_1 * \mathcal{A}_2$ iff $\exists h_1, h_2$ such that $h = h_1 * h_2$, $(s,h_1) \models \mathcal{A}_1$ and $(s,h_2) \models \mathcal{A}_2$.
- $(s,h) \models A_1 \twoheadrightarrow A_2$ iff for all h', if $h \perp h'$ and $(s,h') \models A_1$ then $(s,h*h') \models A_2$.
- + clauses for Boolean operators.

Memory states with arithmetic and records

$$\begin{array}{ll} x+1 \stackrel{l}{\hookrightarrow} y & h(s(x)+1)(l) = s(y) \\ y \stackrel{l'}{\hookrightarrow} null & h(s(y))(l') = nil \end{array}$$

Simple properties on memory states

• The memory heap has at least two cells (size \geq 2):

 $\neg emp * \neg emp$

• The memory heap has exactly one cell at address x $(x \stackrel{l}{\mapsto} e)$:

$$\mathbf{x} \stackrel{l}{\hookrightarrow} \boldsymbol{e} \land \neg (\texttt{size} \geq \mathbf{2})$$

• The variable x is allocated in the heap (alloc(x)):

$$(\mathtt{x}\stackrel{l}{\hookrightarrow} \mathtt{null}) { *} { \perp}$$

Model-checking and satisfiability problems

• Satisfiability problem:

input: A formula A in SL. question: Is there a memory state (s, h) such that $(s, h) \models A$?

Model-checking problem:

input: A formula A in SL, a memory state (s, h). question: $(s, h) \models A$?

- Standard property: A is satisfiable iff there is a store s such that (s, Ø) ⊨ ¬(A→ ⊥).
- A is satisfiable iff there is a s such that (s, Ø) ⊨ ¬(A→* ⊥), and for each x ∈ Y, s(x) ≤ (|Y| + 1) where Y is the set of variables occuring in A.

On the complexity of SL

 Model-checking, satisfiability and validity for SL are PSPACE-complete problems.

[Calcagno & Yang & O'Hearn, FSTTCS'01]

- PSPACE upper bound is obtained thanks to a "small memory state property".
- SL + ∃ is undecidable [C. & Y. & O'H., FSTTCS 01] with a unique label [Brochenin & Demri & Lozes, I&C 12]

Bounding the syntactic resources

Test formulae

 $e ::= x \mid \text{null}$ $\mathcal{B} ::= x \stackrel{l}{\hookrightarrow} e \mid \text{alloc}(x) \mid e = e' \mid \text{size} \geq k$

where $k \in \mathbb{N}$, x is a variable and *I* is a label.

• Measure μ restricts the test formulae

$$\mu = (\texttt{W}_{\mu}, \texttt{Lab}_{\mu}, \texttt{Var}_{\mu}) \in \mathbb{N} imes \mathcal{P}_{f}(\texttt{Lab}) imes \mathcal{P}_{f}(\texttt{Var})$$

T_µ: set of test formulae restricted to the resources from the measure (*k* < *w_µ*, *l* ∈ Lab_µ, x ∈ Var_µ).

Measure from a formula \mathcal{A}

•
$$\mu_{\mathcal{A}} = (W_{\mathcal{A}}, \texttt{Lab}_{\mathcal{A}}, \texttt{Var}_{\mathcal{A}})$$

- Lab_A: set of labels in A (analogous for defining Var_A).
- Definition for w_A :

•
$$w_{\mathcal{B}} \stackrel{\text{def}}{=} 1$$
 if \mathcal{B} is atomic.
• $w_{\mathcal{A}_1 \oplus \mathcal{A}_2} \stackrel{\text{def}}{=} \operatorname{Max}(w_{\mathcal{A}_1}, w_{\mathcal{A}_2})$ for $\oplus \in \{\land, \prec, \Rightarrow\}$.
• $w_{\mathcal{A}_1 \ast \mathcal{A}_2} \stackrel{\text{def}}{=} w_{\mathcal{A}_1} + w_{\mathcal{A}_2}$

• Cardinal of $\mathcal{T}_{\mu_{\mathcal{A}}}$ is polynomial in the size of \mathcal{A} .

Equivalence relation \simeq_{μ}

- $Abs_{\mu}(s,h) \stackrel{\text{\tiny def}}{=} \{ \mathcal{A} \in \mathcal{T}_{\mu} : (s,h) \models \mathcal{A} \}.$
- (s, h) ≃_μ (s', h') ⇔ Abs_μ(s, h) = Abs_μ(s', h').
 i.e. formulae in T_μ cannot distinguish the two memory states.
- If $(s, h) \simeq_{\mu} (s', h')$ then for every formula \mathcal{A} with $\mu_{\mathcal{A}} \leq \mu$, we have $(s, h) \models \mathcal{A}$ iff $(s', h') \models \mathcal{A}$.
- As a corollary, every *A* is logically equivalent to a Boolean combination of test formulae from *T*_{μ_A}.

$$\mathcal{A} \Leftrightarrow \bigvee_{(\mathbf{s},h)\models\mathcal{A}} (\bigwedge_{\mathcal{B}\in \mathsf{Abs}_{\mu_{\mathcal{A}}}(\mathbf{s},h)} \mathcal{B}) \land (\bigwedge_{\mathcal{B}\in \mathcal{T}_{\mu_{\mathcal{A}}}\setminus \mathsf{Abs}_{\mu_{\mathcal{A}}}(\mathbf{s},h)} \neg \mathcal{B})$$

[Lozes, PhD 04]

Distributivity Lemma

- Set of measures has a natural lattice structure for the pointwise order.
- Suppose $\mu = \mu_1 + \mu_2$, $(s, h) \simeq_{\mu} (s', h')$ and $h = h_1 * h_2$.
- Then, there are h'_1 and h'_2 such that

1
$$h' = h'_1 * h'_2,$$

2 $(s, h_1) \simeq_{\mu_1} (s', h'_1),$
3 $(s, h_2) \simeq_{\mu_2} (s', h'_2).$

• Another useful property: if $(s, h) \simeq_{\mu} (s', h')$, then for all $h_0 \perp h$, there is $h'_0 \perp h'$ s.t. $(s, h_0) \simeq_{\mu} (s', h'_0)$.

Congruence Lemma

- $(s, h_0), (s', h'_0), (s, h_1), (s', h'_1)$ with $h_0 \perp h_1, h'_0 \perp h'_1$.
- Assume $(s, h_0) \simeq_{\mu} (s', h'_0)$ and $(s, h_1) \simeq_{\mu} (s', h'_1)$.
- Then, $(s, h_0 * h_1) \simeq_{\mu} (s', h'_0 * h'_1)$.

Soundness of Abstraction (bis)

- If $(s, h) \simeq_{\mu} (s', h')$ then for every \mathcal{A} with $\mu_{\mathcal{A}} \leq \mu$, we have $(s, h) \models \mathcal{A}$ iff $(s', h') \models \mathcal{A}$.
- Proof by structural induction. By way of example, we treat the case A = A₁ ∗ A₂ and suppose that (s, h) ⊨ A.
- There are h_1 and h_2 s.t. $h = h_1 * h_2$, $(s_1, h_1) \models A_1$ and $(s_2, h_2) \models A_2$.
- As $\mu \ge \mu_A$ and $\mu_A \ge \mu_{A_1} + \mu_{A_2}$, there are μ_1 and μ_2 such that $\mu_1 \ge \mu_{A_1}$, $\mu_2 \ge \mu_{A_2}$ and $\mu_1 + \mu_2 = \mu$.
- By Distributivity Lemma, there are h'₁ and h'₂ such that
 1 h' = h'₁ * h'₂,
 2 (s, h₁) ≃_{µ1} (s', h'₁),
 3 (s, h₂) ≃_{µ2} (s', h'₂).
- By (IH), $(s', h'_1) \models A_1$ and $(s', h'_2) \models A_2$, whence $(s', h') \models A$.

Building small disjoint heaps

- Measure $\mu = (w, Lab_{\mu}, Var_{\mu})$ and $I_0 \notin Lab_{\mu}$.
- Assume that $(s, h) \simeq_{\mu} (s', h')$ and $h_0 \perp h$.
- Then, there is h'_0 such that
 - $h_0'\perp h'$ and $(s,h_0)\simeq_\mu (s',h_0'),$
 - $\operatorname{card}(\operatorname{dom}(h'_0)) \leq \max(W, \operatorname{card}(\operatorname{Var}_{\mu})),$
 - $\max(\operatorname{dom}(h'_0) \cup \operatorname{Im}^2(h'_0)) \le \max((s'(\operatorname{Var}_{\mu}) \cap \mathbb{N}) \cup \operatorname{dom}(h')) + w$,
 - for all $n \in \operatorname{dom}(h'_0)$, $\{I : h'_0(n)(I) \text{ is defined}\} \subseteq \operatorname{Lab}_{\mu} \uplus \{I_0\}$.
- h'_0 : small disjoint heap w.r.t. μ and (s', h').
- h'₀ can be represented in polynomial space in size(µ) + size_{Labµ}(h₀) + size_{Varµ}(s') + size_{Labµ}(h').

Model-checking problem in PSPACE

 $MC((s, h), A, \mu)$

(base-cases) If A is atomic, then return $(s, h) \models A$;

(Boolean-cases) If $A = A_1 \land A_2$, then return (MC((*s*, *h*), A_1, μ) and MC((*s*, *h*), A_2, μ)); Other Boolean operators are treated analogously.

(* case) If $\mathcal{A} = \mathcal{A}_1 * \mathcal{A}_2$, then return \perp if there are no h_1, h_2 such that $h = h_1 * h_2$ and $MC((s, h_1), \mathcal{A}_1, \mu)$ and $MC((s, h_2), \mathcal{A}_2, \mu))$;

(-* case) If $\mathcal{A} = \mathcal{A}_1 - \mathcal{A}_2$, then return \perp if for some small disjoint heap h' with respect to μ and (s, h) verifying MC($(s, h'), \mathcal{A}_1, \mu$), we have not MC($(s, h * h'), \mathcal{A}_2, \mu$);

Return \top ;

Ingredients for the PSPACE upper bound

- Recursion depth is linear in $|\mathcal{A}|$.
- Quantifications are over sets of exponential size in $|\mathcal{A}| + \operatorname{size}_{\operatorname{Var}_{\mu}, \operatorname{Lab}_{\mu}}((s, h))$ where $\mu_{\mathcal{A}} = (w_{\mathcal{A}}, \operatorname{Lab}_{\mu}, \operatorname{Var}_{\mu})$.
- So, all the heaps considered in the algorithm are of polynomial-size in |A| + size_{Varu,Labu}((s, h)).

Correctness

- Given A with $\mu_A \leq \mu$, we show $(s, h) \models A$ iff MC($(s, h), A, \mu$) returns \top .
- Whenever $(s, h) \not\models A_1 \twoheadrightarrow A_2$, there is $h_0 \perp h$ such that $(s, h_0) \models A_1$ and $(s, h * h_0) \not\models A_2$.
- We have seen that there is a small disjoint heap h'₀ with respect to μ and (s, h) such that (s, h'₀) ≃_μ (s, h₀).
- Since the measure of A₁ is less than μ, Soundness Lemma implies (s, h'₀) ⊨ A₁.
- By Congruence Lemma, $(s, h * h'_0) \not\models A_2$.
- Hence, (s, h) ⊭ A₁→A₂ iff there is a small heap h'₀ such that (s, h'₀) ⊨ A₁ and (s, h ∗ h'₀) ⊭ A₂.

Summary

- Model-checking problem is in PSPACE.
- Satisfiability can be reduced to model-checking in logspace.
- \mathcal{A} is satisfiable iff there is (s, h) such that $(s, h) \models \mathcal{A}$, $\operatorname{card}(\operatorname{dom}(h)) \leq \operatorname{size}(\mathcal{A})$ and $\operatorname{ran}(s) \subseteq \{0, \ldots, \operatorname{size}(\mathcal{A})\}$.
- Satisfiability problem is in PSPACE.
- PSPACE-hardness is by reducing QBF. [Calcagno & Yang & O'Hearn, FSTTCS 01]

Decidability status of first-order SL with a unique individual variable?

Formulae:

 $\mathcal{A} := \neg \mathcal{A} \mid \mathcal{A} \land \mathcal{A} \mid \exists x_{\mathsf{Unique}} \; \mathcal{A} \mid x \hookrightarrow y \mid x = y \mid \mathcal{A} \ast \mathcal{A} \mid \mathcal{A} {\twoheadrightarrow} \mathcal{A}$

- $(s, h) \models \exists x_{\text{Unique}} \mathcal{A}$ iff there is $l \in \mathbb{N}$ such that $(s[x_{\text{Unique}} \mapsto l], h) \models \mathcal{A}.$
- What is the right set of test formulae ?

Work in progress

- Suggestions for test formulae (apart from those of SL):
 - $\operatorname{alloc}^{-1}(\mathbf{x}_i)$: $\exists \mathbf{x}_U \mathbf{x}_U \hookrightarrow \mathbf{x}_i$
 - $\exists selfloop: \exists x_U x_U \hookrightarrow x_U$
 - toloop (x_i) : $\exists x_U x_i \hookrightarrow x_U \land x_U \hookrightarrow x_U$

 - inbetween₁ (x_i, x_j) : $\exists x_U x_i \hookrightarrow x_U \land x_U \hookrightarrow x_j$
 - inbetween₂(x_i, x_j): $\exists x_U x_i \hookrightarrow x_U \land x_j \hookrightarrow x_U$
 - $\sharp \mathbf{x}_i \geq k$: $\texttt{alloc}^{-1}(\mathbf{x}_i) * \cdots * \texttt{alloc}^{-1}(\mathbf{x}_i)$ (*k* times)
 - Le petit dernier toalloc(x_i):

$$\exists \mathbf{x}_U \ \mathbf{x}_i \hookrightarrow \mathbf{x}_U \land (\mathbf{x}_U \hookrightarrow \texttt{null}) \twoheadrightarrow \bot$$

- More atomic formulae? complexity if this works?
- Is it possible to eliminate quantifiers syntactically ?
- Generalization to other types of memory cells ?
- Which other macros defined from ∃ can we add while preserving decidability ? 23

Tasks in DYNRES

- Is first-order SL restricted to one variable decidable? (see Task 2.3 "Decidable fragments")
- Tableaux calculus for SL restricted to one variable, if decidable? (see Task 3 "Proof Systems for Separation and Update Logics")
- Automata-based decision procedures for known decidable fragments of SL? (see Task 3.1 "Structures, calculi and automata")