Propositional Separation Logic in PSPACE A classical result

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA

DYNRES Kick-off Meeting, February 2012

Separation logic

- Introduced by Reynolds, Pym and O'Hearn.
- Reasoning about the heap with a strong form of locality built-in.
- $\mathcal{A} * \mathcal{B}$ is true whenever the heap can be divided into two disjoint parts, one satisfies \mathcal{A}, the other one \mathcal{B}.
- $\mathcal{A} * \mathcal{B}$ is true whenever \mathcal{A} is true for a (fresh) disjoint heap, \mathcal{B} is true for the combined heap.

Modelling memory states

- Set of variables

$$
\operatorname{Var}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\} .
$$

- Set of selectors/labels Lab.
- Set of values Val $=\mathbb{N} \uplus\{n i l\}$.
- Set of stores: $\mathcal{S} \stackrel{\text { def }}{=} \operatorname{Var} \rightarrow \operatorname{Val}$.
- Set of heaps:

$$
\mathcal{H} \stackrel{\text { def }}{=} \mathbb{N} \rightharpoonup_{f i n}\left(\mathrm{Lab} \rightharpoonup_{f i n+} \mathrm{Val}\right)
$$

Memory state (s, h)

Disjoint heaps

- h_{1} and h_{2} are disjoint whenever $\operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)=\emptyset$. Notation: $h_{1} \perp h_{2}$.
- Disjointness does not concern records.
- Disjoint union $h_{1} * h_{2}$ whenever $h_{1} \perp h_{2}$.
- Disjoint heap graphs (with a unique selector and Val $=\mathbb{N}$):

-

4

Syntax

- Expressions

$$
e::=x \mid n u l l
$$

- Atomic formulae

$$
\pi::=e=e^{\prime}|\mathrm{x} \stackrel{〕}{\hookrightarrow} \boldsymbol{e}| \mathrm{emp}
$$

- $\mathrm{x} \hookrightarrow e_{1}, e_{2}$ can be encoded with $\mathrm{x} \stackrel{1}{\hookrightarrow} e_{1} \wedge \mathrm{x} \stackrel{2}{\hookrightarrow} e_{2}$.
- Formulae:

$$
\mathcal{A}::=\pi|\mathcal{A} \wedge \mathcal{B}| \neg \mathcal{A}|\mathcal{A} * \mathcal{B}| \mathcal{A} * \mathcal{B}
$$

Semantics

- $(s, h) \models$ emp iff $\operatorname{dom}(h)=\emptyset$.
- $(s, h) \models e=e^{\prime}$ iff $\llbracket e \rrbracket_{s}=\llbracket e^{\prime} \rrbracket_{s}$, with $\llbracket \mathrm{x} \rrbracket_{s}=s(\mathrm{x})$ and $\llbracket n u l l \rrbracket_{s}=n i l$.
- $(s, h) \models \mathrm{x} \stackrel{\prime}{\hookrightarrow} e^{\prime}$ iff $\llbracket \mathrm{x} \rrbracket_{s} \in \mathbb{N}$ and $\llbracket \mathrm{x} \rrbracket \in \operatorname{dom}(h)$ and $h(s(\mathrm{x}))(I)=\llbracket e^{\prime} \rrbracket_{s}$.
- $(s, h) \models \mathcal{A}_{1} * \mathcal{A}_{2}$ iff $\exists h_{1}, h_{2}$ such that $h=h_{1} * h_{2}$, $\left(s, h_{1}\right) \models \mathcal{A}_{1}$ and $\left(s, h_{2}\right) \models \mathcal{A}_{2}$.
- $(s, h) \models \mathcal{A}_{1} * \mathcal{A}_{2}$ iff for all h^{\prime}, if $h \perp h^{\prime}$ and $\left(s, h^{\prime}\right) \models \mathcal{A}_{1}$ then $\left(s, h * h^{\prime}\right) \models \mathcal{A}_{2}$.
- + clauses for Boolean operators.

Memory states with arithmetic and records

Simple properties on memory states

- The memory heap has at least two cells (size ≥ 2):

$$
\neg \mathrm{emp} * \neg \mathrm{emp}
$$

- The memory heap has exactly one cell at address x ($\mathrm{x} \stackrel{\prime}{\mapsto} e$):

$$
\mathrm{x} \stackrel{\prime}{\hookrightarrow} e \wedge \neg(\text { size } \geq 2)
$$

- The variable x is allocated in the heap (alloc(x)):

$$
(\mathrm{x} \stackrel{!}{\hookrightarrow} \text { null }) * \perp
$$

Model-checking and satisfiability problems

- Satisfiability problem: input: A formula \mathcal{A} in SL .
question: Is there a memory state (s, h) such that

$$
(s, h) \models \mathcal{A} ?
$$

- Model-checking problem: input: A formula \mathcal{A} in SL, a memory state (s, h). question: $(s, h) \models \mathcal{A}$?
- Standard property: \mathcal{A} is satisfiable iff there is a store s such that $(s, \emptyset) \models \neg(\mathcal{A} * \perp)$.
- \mathcal{A} is satisfiable iff there is a s such that $(s, \emptyset) \models \neg(\mathcal{A} * \perp)$, and for each $\mathrm{x} \in Y, s(\mathrm{x}) \leq(|Y|+1)$ where Y is the set of variables occuring in \mathcal{A}.

On the complexity of SL

- Model-checking, satisfiability and validity for SL are PSPACE-complete problems.
[Calcagno \& Yang \& O'Hearn, FSTTCS'01]
- PSPACE upper bound is obtained thanks to a "small memory state property".
- $\mathrm{SL}+\exists$ is undecidable [C. \& Y. \& O'H., FSTTCS 01] with a unique label [Brochenin \& Demri \& Lozes, I\&C 12]

Bounding the syntactic resources

- Test formulae

$$
\begin{gathered}
e::=\mathrm{x} \mid \text { null } \\
\mathcal{B}::=\mathrm{x} \stackrel{〕}{\hookrightarrow} \boldsymbol{e}|\operatorname{alloc}(\mathrm{x})| \boldsymbol{e}=e^{\prime} \mid \operatorname{size} \geq k
\end{gathered}
$$

where $k \in \mathbb{N}, \mathrm{x}$ is a variable and / is a label.

- Measure μ restricts the test formulae

$$
\mu=\left(w_{\mu}, \operatorname{Lab}_{\mu}, \operatorname{Var}_{\mu}\right) \in \mathbb{N} \times \mathcal{P}_{f}(\operatorname{Lab}) \times \mathcal{P}_{f}(\operatorname{Var})
$$

- \mathcal{T}_{μ} : set of test formulae restricted to the resources from the measure $\left(k<w_{\mu}, l \in \operatorname{Lab}_{\mu}, \mathrm{x} \in \operatorname{Var}_{\mu}\right)$.

Measure from a formula \mathcal{A}

- $\mu_{\mathcal{A}}=\left(w_{\mathcal{A}}, \operatorname{Lab}_{\mathcal{A}}, \operatorname{Var}_{\mathcal{A}}\right)$
- $\operatorname{Lab}_{\mathcal{A}}$: set of labels in \mathcal{A} (analogous for defining $\left.\operatorname{Var}_{\mathcal{A}}\right)$.
- Definition for $w_{\mathcal{A}}$:
- $w_{\mathcal{B}} \stackrel{\text { def }}{=} 1$ if \mathcal{B} is atomic.
- $w_{\mathcal{A}_{1} \oplus \mathcal{A}_{2}} \stackrel{\text { def }}{=} \operatorname{Max}\left(w_{\mathcal{A}_{1}}, w_{\mathcal{A}_{2}}\right)$ for $\oplus \in\{\wedge, *, \Rightarrow\}$.
- $w_{\mathcal{A}_{1} * \mathcal{A}_{2}} \stackrel{\text { def }}{=} w_{\mathcal{A}_{1}}+w_{\mathcal{A}_{2}}$
- Cardinal of $\mathcal{T}_{\mu_{\mathcal{A}}}$ is polynomial in the size of \mathcal{A}.

Equivalence relation \simeq_{μ}

- $\operatorname{Abs}_{\mu}(s, h) \stackrel{\text { def }}{=}\left\{\mathcal{A} \in \mathcal{T}_{\mu}:(s, h) \models \mathcal{A}\right\}$.
- $(s, h) \simeq_{\mu}\left(s^{\prime}, h^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} A b s_{\mu}(s, h)=A b s_{\mu}\left(s^{\prime}, h^{\prime}\right)$. i.e. formulae in \mathcal{T}_{μ} cannot distinguish the two memory states.
- If $(s, h) \simeq_{\mu}\left(s^{\prime}, h^{\prime}\right)$ then for every formula \mathcal{A} with $\mu_{\mathcal{A}} \leqslant \mu$, we have $(s, h) \models \mathcal{A}$ iff $\left(s^{\prime}, h^{\prime}\right) \models \mathcal{A}$.
- As a corollary, every \mathcal{A} is logically equivalent to a Boolean combination of test formulae from $\mathcal{T}_{\mu_{\mathcal{A}}}$.

$$
\mathcal{A} \Leftrightarrow \bigvee_{(s, h) \models \mathcal{A}}\left(\bigwedge_{\mathcal{B} \in A b s_{\mu_{\mathcal{A}}}(s, h)} \mathcal{B}\right) \wedge\left(\bigwedge_{\mathcal{B} \in \mathcal{T}_{\mu_{\mathcal{A}}} \backslash A b s_{\mu_{\mathcal{A}}}(s, h)} \neg \mathcal{B}\right)
$$

[Lozes, PhD 04]

Distributivity Lemma

- Set of measures has a natural lattice structure for the pointwise order.
- Suppose $\mu=\mu_{1}+\mu_{2},(s, h) \simeq_{\mu}\left(s^{\prime}, h^{\prime}\right)$ and $h=h_{1} * h_{2}$.
- Then, there are h_{1}^{\prime} and h_{2}^{\prime} such that
(1) $h^{\prime}=h_{1}^{\prime} * h_{2}^{\prime}$,
(2) $\left(s, h_{1}\right) \simeq_{\mu_{1}}\left(s^{\prime}, h_{1}^{\prime}\right)$,
(3) $\left(s, h_{2}\right) \simeq_{\mu_{2}}\left(s^{\prime}, h_{2}^{\prime}\right)$.
- Another useful property: if $(s, h) \simeq{ }_{\mu}\left(s^{\prime}, h^{\prime}\right)$, then for all $h_{0} \perp h$, there is $h_{0}^{\prime} \perp h^{\prime}$ s.t. $\left(s, h_{0}\right) \simeq_{\mu}\left(s^{\prime}, h_{0}^{\prime}\right)$.

Congruence Lemma

- $\left(s, h_{0}\right),\left(s^{\prime}, h_{0}^{\prime}\right),\left(s, h_{1}\right),\left(s^{\prime}, h_{1}^{\prime}\right)$ with $h_{0} \perp h_{1}, h_{0}^{\prime} \perp h_{1}^{\prime}$.
- Assume $\left(s, h_{0}\right) \simeq_{\mu}\left(s^{\prime}, h_{0}^{\prime}\right)$ and $\left(s, h_{1}\right) \simeq_{\mu}\left(s^{\prime}, h_{1}^{\prime}\right)$.
- Then, $\left(s, h_{0} * h_{1}\right) \simeq_{\mu}\left(s^{\prime}, h_{0}^{\prime} * h_{1}^{\prime}\right)$.

Soundness of Abstraction (bis)

- If $(s, h) \simeq_{\mu}\left(s^{\prime}, h^{\prime}\right)$ then for every \mathcal{A} with $\mu_{\mathcal{A}} \leqslant \mu$, we have $(s, h) \models \mathcal{A}$ iff $\left(s^{\prime}, h^{\prime}\right) \models \mathcal{A}$.
- Proof by structural induction. By way of example, we treat the case $\mathcal{A}=\mathcal{A}_{1} * \mathcal{A}_{2}$ and suppose that $(s, h) \models \mathcal{A}$.
- There are h_{1} and h_{2} s.t. $h=h_{1} * h_{2},\left(s_{1}, h_{1}\right) \models \mathcal{A}_{1}$ and $\left(s_{2}, h_{2}\right) \models \mathcal{A}_{2}$.
- As $\mu \geqslant \mu_{\mathcal{A}}$ and $\mu_{\mathcal{A}} \geqslant \mu_{\mathcal{A}_{1}}+\mu_{\mathcal{A}_{2}}$, there are μ_{1} and μ_{2} such that $\mu_{1} \geqslant \mu_{\mathcal{A}_{1}}, \mu_{2} \geqslant \mu_{\mathcal{A}_{2}}$ and $\mu_{1}+\mu_{2}=\mu$.
- By Distributivity Lemma, there are h_{1}^{\prime} and h_{2}^{\prime} such that
(1) $h^{\prime}=h_{1}^{\prime} * h_{2}^{\prime}$,
(2) $\left(s, h_{1}\right) \simeq_{\mu_{1}}\left(s^{\prime}, h_{1}^{\prime}\right)$,
(3) $\left(s, h_{2}\right) \simeq_{\mu_{2}}\left(s^{\prime}, h_{2}^{\prime}\right)$.
- By (IH), $\left(s^{\prime}, h_{1}^{\prime}\right) \models \mathcal{A}_{1}$ and $\left(s^{\prime}, h_{2}^{\prime}\right) \models \mathcal{A}_{2}$, whence $\left(s^{\prime}, h^{\prime}\right) \models \mathcal{A}$.

Building small disjoint heaps

- Measure $\mu=\left(w, \operatorname{Lab}_{\mu}, \operatorname{Var}_{\mu}\right)$ and $I_{0} \notin \operatorname{Lab}_{\mu}$.
- Assume that $(s, h) \simeq_{\mu}\left(s^{\prime}, h^{\prime}\right)$ and $h_{0} \perp h$.
- Then, there is h_{0}^{\prime} such that
- $h_{0}^{\prime} \perp h^{\prime}$ and $\left(s, h_{0}\right) \simeq_{\mu}\left(s^{\prime}, h_{0}^{\prime}\right)$,
- $\operatorname{card}\left(\operatorname{dom}\left(h_{0}^{\prime}\right)\right) \leq \max \left(w, \operatorname{card}\left(\operatorname{Var}_{\mu}\right)\right)$,
- $\max \left(\operatorname{dom}\left(h_{0}^{\prime}\right) \cup \operatorname{Im}^{2}\left(h_{0}^{\prime}\right)\right) \leq \max \left(\left(s^{\prime}\left(\operatorname{Var}_{\mu}\right) \cap \mathbb{N}\right) \cup \operatorname{dom}\left(h^{\prime}\right)\right)+w$,
- for all $n \in \operatorname{dom}\left(h_{0}^{\prime}\right),\left\{I: h_{0}^{\prime}(n)(I)\right.$ is defined $\} \subseteq \operatorname{Lab}_{\mu} \uplus\left\{l_{0}\right\}$.
- $h_{0}^{\prime}:$ small disjoint heap w.r.t. μ and $\left(s^{\prime}, h^{\prime}\right)$.
- h_{0}^{\prime} can be represented in polynomial space in $\operatorname{size}(\mu)+\operatorname{size}_{\mathrm{Lab}_{\mu}}\left(h_{0}\right)+\operatorname{size}_{\mathrm{Var}_{\mu}}\left(s^{\prime}\right)+\operatorname{size}_{\mathrm{Lab}_{\mu}}\left(h^{\prime}\right)$.

Model-checking problem in PSPACE

$\operatorname{MC}((s, h), \mathcal{A}, \mu)$
(base-cases) If \mathcal{A} is atomic, then return $(s, h) \models \mathcal{A}$;
(Boolean-cases) If $\mathcal{A}=\mathcal{A}_{1} \wedge \mathcal{A}_{2}$, then return $\left(\mathrm{MC}\left((s, h), \mathcal{A}_{1}, \mu\right)\right.$ and $\left.\operatorname{MC}\left((s, h), \mathcal{A}_{2}, \mu\right)\right)$;
Other Boolean operators are treated analogously.
($*$ case) If $\mathcal{A}=\mathcal{A}_{1} * \mathcal{A}_{2}$, then return \perp if there are no h_{1}, h_{2} such that $h=h_{1} * h_{2}$ and $\operatorname{MC}\left(\left(s, h_{1}\right), \mathcal{A}_{1}, \mu\right)$ and $\left.\operatorname{MC}\left(\left(s, h_{2}\right), \mathcal{A}_{2}, \mu\right)\right)$;
($*$ case) If $\mathcal{A}=\mathcal{A}_{1} * \mathcal{A}_{2}$, then return \perp if for some small disjoint heap h^{\prime} with respect to μ and (s, h) verifying $\operatorname{MC}\left(\left(s, h^{\prime}\right), \mathcal{A}_{1}, \mu\right)$, we have not $\operatorname{MC}\left(\left(s, h * h^{\prime}\right), \mathcal{A}_{2}, \mu\right)$;

Ingredients for the PSPACE upper bound

- Recursion depth is linear in $|\mathcal{A}|$.
- Quantifications are over sets of exponential size in $|\mathcal{A}|+\operatorname{size}_{\operatorname{Var}_{\mu}, \operatorname{Lab}_{\mu}}((s, h))$ where $\mu_{\mathcal{A}}=\left(w_{\mathcal{A}}, \operatorname{Lab}_{\mu}, \operatorname{Var}_{\mu}\right)$.
- So, all the heaps considered in the algorithm are of polynomial-size in $|\mathcal{A}|+$ size $_{\mathrm{Var}_{\mu}, \mathrm{Lab}_{\mu}}((s, h))$.

Correctness

- Given \mathcal{A} with $\mu_{\mathcal{A}} \leq \mu$, we show $(s, h) \models \mathcal{A}$ iff $\mathrm{MC}((s, h), \mathcal{A}, \mu)$ returns T .
- Whenever $(s, h) \not \models \mathcal{A}_{1} * \mathcal{A}_{2}$, there is $h_{0} \perp h$ such that $\left(s, h_{0}\right) \models \mathcal{A}_{1}$ and $\left(s, h * h_{0}\right) \not \models \mathcal{A}_{2}$.
- We have seen that there is a small disjoint heap h_{0}^{\prime} with respect to μ and (s, h) such that $\left(s, h_{0}^{\prime}\right) \simeq_{\mu}\left(s, h_{0}\right)$.
- Since the measure of \mathcal{A}_{1} is less than μ, Soundness Lemma implies $\left(s, h_{0}^{\prime}\right) \models \mathcal{A}_{1}$.
- By Congruence Lemma, $\left(s, h * h_{0}^{\prime}\right) \not \vDash \mathcal{A}_{2}$.
- Hence, $(s, h) \not \models \mathcal{A}_{1} * \mathcal{A}_{2}$ iff there is a small heap h_{0}^{\prime} such that $\left(s, h_{0}^{\prime}\right) \models \mathcal{A}_{1}$ and $\left(s, h * h_{0}^{\prime}\right) \not \models \mathcal{A}_{2}$.

Summary

- Model-checking problem is in PSPACE.
- Satisfiability can be reduced to model-checking in logspace.
- \mathcal{A} is satisfiable iff there is (s, h) such that $(s, h) \models \mathcal{A}$, $\operatorname{card}(\operatorname{dom}(h)) \leq \operatorname{size}(\mathcal{A})$ and $\operatorname{ran}(s) \subseteq\{0, \ldots, \operatorname{size}(\mathcal{A})\}$.
- Satisfiability problem is in PSPACE.
- PSPACE-hardness is by reducing QBF.
[Calcagno \& Yang \& O'Hearn, FSTTCS 01]

Decidability status of first-order SL with a unique individual variable?

- Formulae:

$$
\mathcal{A}:=\neg \mathcal{A}|\mathcal{A} \wedge \mathcal{A}| \exists \mathrm{x}_{\text {Unique }} \mathcal{A}|\mathrm{x} \hookrightarrow \mathrm{y}| \mathrm{x}=\mathrm{y}|\mathcal{A} * \mathcal{A}| \mathcal{A} * \mathcal{A}
$$

- $(s, h) \models \exists$ xunique \mathcal{A} iff there is $I \in \mathbb{N}$ such that $\left(s\left[\mathrm{x}_{\text {Unique }} \mapsto I\right], h\right) \models \mathcal{A}$.
- What is the right set of test formulae ?

Work in progress

- Suggestions for test formulae (apart from those of SL):
- alloc ${ }^{-1}\left(\mathrm{x}_{i}\right): \exists \mathrm{x} \cup \mathrm{x}_{\cup} \hookrightarrow \mathrm{x}_{i}$
- ヨselfloop: $\exists \mathrm{x} U \mathrm{x}_{U} \hookrightarrow \mathrm{x} U$
- toloop $\left(\mathrm{x}_{i}\right): \exists \mathrm{x} U \mathrm{x}_{i} \hookrightarrow \mathrm{x} U \wedge \mathrm{x}_{U} \hookrightarrow \mathrm{x} U$
- \#selfloops $\geq k$: \exists selfloop $* \cdots * \exists$ selfloop (k times)
- inbetween $\left(x_{i}, x_{j}\right): \exists \mathrm{x}_{U} \mathrm{x}_{i} \hookrightarrow \mathrm{x}_{U} \wedge \mathrm{x}_{U} \hookrightarrow \mathrm{x}_{j}$
- inbetween $2\left(x_{i}, x_{j}\right): \exists \mathrm{x}_{U} \mathrm{x}_{i} \hookrightarrow \mathrm{x}_{U} \wedge \mathrm{x}_{j} \hookrightarrow \mathrm{x}_{U}$
- $\sharp x_{i} \geq k$: alloc ${ }^{-1}\left(x_{i}\right) * \cdots * \operatorname{alloc}^{-1}\left(x_{i}\right)$ (k times)
- Le petit dernier toalloc $\left(x_{i}\right)$:

$$
\exists \mathrm{x} \cup \mathrm{x}_{i} \hookrightarrow \mathrm{x} \cup \wedge(\mathrm{x} \cup \hookrightarrow \mathrm{null})-* \perp
$$

- More atomic formulae? complexity if this works?
- Is it possible to eliminate quantifiers syntactically ?
- Generalization to other types of memory cells ?
- Which other macros defined from \exists can we add while preserving decidability?

23

Tasks in DYNRES

- Is first-order SL restricted to one variable decidable? (see Task 2.3 "Decidable fragments")
- Tableaux calculus for SL restricted to one variable, if decidable?
(see Task 3 "Proof Systems for Separation and Update Logics")
- Automata-based decision procedures for known decidable fragments of SL? (see Task 3.1 "Structures, calculi and automata")

