
Propositional Separation Logic in PSPACE

A classical result

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA

DYNRES Kick-off Meeting, February 2012

Separation logic

• Introduced by Reynolds, Pym and O’Hearn.

• Reasoning about the heap with a strong form of locality
built-in.

• A ∗ B is true whenever the heap can be divided into two
disjoint parts, one satisfies A, the other one B.

• A−∗B is true whenever A is true for a (fresh) disjoint heap,
B is true for the combined heap.

2

Modelling memory states

• Set of variables
Var = {x,y,z, . . .}.

• Set of selectors/labels Lab.

• Set of values Val = N ⊎ {nil}.

• Set of stores: S def
= Var→ Val.

• Set of heaps:
H

def
= N ⇀fin (Lab ⇀fin+ Val).

Memory state (s,h)

3

Disjoint heaps

• h1 and h2 are disjoint whenever dom(h1) ∩ dom(h2) = ∅.
Notation: h1 ⊥ h2.

• Disjointness does not concern records.

• Disjoint union h1 ∗ h2 whenever h1 ⊥ h2.

• Disjoint heap graphs (with a unique selector and Val = N):

= ∗

4

Syntax

• Expressions
e ::= x | null

• Atomic formulae

π ::= e = e′ | x
l
→֒ e | emp

• x →֒ e1,e2 can be encoded with x
1
→֒ e1 ∧ x

2
→֒ e2.

• Formulae:

A ::= π | A ∧ B | ¬A | A ∗ B | A−∗B

5

Semantics
• (s,h) |= emp iff dom(h) = ∅.

• (s,h) |= e = e′ iff J e Ks = J e′ Ks, with J x Ks = s(x) and
J null Ks = nil .

• (s,h) |= x
l
→֒ e′ iff J x Ks ∈ N and J x K ∈ dom(h) and

h(s(x))(l) = J e′ Ks.

• (s,h) |= A1 ∗ A2 iff ∃ h1,h2 such that h = h1 ∗ h2,
(s,h1) |= A1 and (s,h2) |= A2.

• (s,h) |= A1−∗A2 iff for all h′, if h ⊥ h′ and (s,h′) |= A1 then
(s,h ∗ h′) |= A2.

• + clauses for Boolean operators.

6

Memory states with arithmetic and records

x+1
l
→֒y h(s(x) + 1)(l) = s(y)

y
l ′
→֒null h(s(y))(l ′) = nil

7

Simple properties on memory states

• The memory heap has at least two cells (size ≥ 2):

¬emp ∗ ¬emp

• The memory heap has exactly one cell at address x

(x l
7→ e):

x
l
→֒ e ∧ ¬(size ≥ 2)

• The variable x is allocated in the heap (alloc(x)):

(x
l
→֒ null)−∗⊥

8

Model-checking and satisfiability problems
• Satisfiability problem:

input: A formula A in SL.
question: Is there a memory state (s,h) such that

(s,h) |= A?

• Model-checking problem:
input: A formula A in SL, a memory state (s,h).

question: (s,h) |= A?

• Standard property: A is satisfiable iff there is a store s
such that (s, ∅) |= ¬(A−∗ ⊥).

• A is satisfiable iff there is a s such that (s, ∅) |= ¬(A−∗ ⊥),
and for each x ∈ Y , s(x) ≤ (|Y |+ 1) where Y is the set of
variables occuring in A.

9

On the complexity of SL

• Model-checking, satisfiability and validity for SL are
PSPACE-complete problems.

[Calcagno & Yang & O’Hearn, FSTTCS’01]

• PSPACE upper bound is obtained thanks to a “small
memory state property”.

• SL+ ∃ is undecidable [C. & Y. & O’H., FSTTCS 01]
with a unique label [Brochenin & Demri & Lozes, I&C 12]

10

Bounding the syntactic resources

• Test formulae

e ::= x | null

B ::= x
l
→֒ e | alloc(x) | e = e′ | size ≥ k

where k ∈ N, x is a variable and l is a label.

• Measure µ restricts the test formulae

µ = (wµ,Labµ,Varµ) ∈ N× Pf (Lab)× Pf (Var)

• Tµ : set of test formulae restricted to the resources from
the measure (k < wµ, l ∈ Labµ, x ∈ Varµ).

11

Measure from a formula A

• µA = (wA,LabA,VarA)

• LabA: set of labels in A (analogous for defining VarA).

• Definition for wA:
• wB

def
= 1 if B is atomic.

• wA1⊕A2

def
= Max(wA1 ,wA2) for ⊕ ∈ {∧,−∗,⇒}.

• wA1∗A2

def
= wA1 + wA2

• Cardinal of TµA
is polynomial in the size of A.

12

Equivalence relation ≃µ

• Absµ(s,h)
def
= {A ∈ Tµ : (s,h) |= A}.

• (s,h) ≃µ (s′,h′)
def
⇔ Absµ(s,h) = Absµ(s′,h′).

i.e. formulae in Tµ cannot distinguish the two memory
states.

• If (s,h) ≃µ (s′,h′) then for every formula A with µA 6 µ,
we have (s,h) |= A iff (s′,h′) |= A.

• As a corollary, every A is logically equivalent to a Boolean
combination of test formulae from TµA

.

A ⇔
∨

(s,h)|=A

(
∧

B∈AbsµA (s,h)

B) ∧ (
∧

B∈TµA\AbsµA (s,h)

¬B)

[Lozes, PhD 04]

13

Distributivity Lemma

• Set of measures has a natural lattice structure for the
pointwise order.

• Suppose µ = µ1 + µ2, (s,h) ≃µ (s′,h′) and h = h1 ∗ h2.

• Then, there are h′
1 and h′

2 such that
1 h′ = h′

1 ∗ h′
2,

2 (s, h1) ≃µ1 (s
′, h′

1),
3 (s, h2) ≃µ2 (s

′, h′
2).

• Another useful property: if (s,h) ≃µ (s′,h′), then for all
h0⊥h, there is h′

0⊥h′ s.t. (s,h0) ≃µ (s′,h′
0).

14

Congruence Lemma

• (s,h0), (s′,h′
0), (s,h1), (s′,h′

1) with h0⊥h1, h′
0⊥h′

1.

• Assume (s,h0) ≃µ (s′,h′
0) and (s,h1) ≃µ (s′,h′

1).

• Then, (s,h0 ∗ h1) ≃µ (s′,h′
0 ∗ h′

1).

15

Soundness of Abstraction (bis)
• If (s,h) ≃µ (s′,h′) then for every A with µA 6 µ, we have
(s,h) |= A iff (s′,h′) |= A.

• Proof by structural induction. By way of example, we treat
the case A = A1 ∗ A2 and suppose that (s,h) |= A.

• There are h1 and h2 s.t. h = h1 ∗ h2, (s1,h1) |= A1 and
(s2,h2) |= A2.

• As µ > µA and µA > µA1 + µA2 , there are µ1 and µ2 such
that µ1 > µA1 , µ2 > µA2 and µ1 + µ2 = µ.

• By Distributivity Lemma, there are h′
1 and h′

2 such that
1 h′ = h′

1 ∗ h′
2,

2 (s, h1) ≃µ1 (s
′, h′

1),
3 (s, h2) ≃µ2 (s

′, h′
2).

• By (IH), (s′,h′
1) |= A1 and (s′,h′

2) |= A2, whence
(s′,h′) |= A.

16

Building small disjoint heaps
• Measure µ = (w ,Labµ,Varµ) and l0 6∈ Labµ.

• Assume that (s,h) ≃µ (s′,h′) and h0⊥h.

• Then, there is h′
0 such that

• h′
0 ⊥ h′ and (s, h0) ≃µ (s′, h′

0),

• card(dom(h′
0)) ≤ max(w , card(Varµ)),

• max(dom(h′
0)∪Im2(h′

0)) ≤ max((s′(Varµ)∩N)∪dom(h′))+w ,

• for all n ∈ dom(h′
0), {l : h′

0(n)(l) is defined} ⊆ Labµ ⊎ {l0}.

• h′
0: small disjoint heap w.r.t. µ and (s′,h′).

• h′
0 can be represented in polynomial space in

size(µ) + sizeLabµ(h0) + sizeVarµ(s
′) + sizeLabµ(h

′).

17

Model-checking problem in PSPACE

MC((s,h),A, µ)

(base-cases) If A is atomic, then return (s,h) |= A;

(Boolean-cases) If A = A1 ∧A2, then return (MC((s,h),A1, µ)
and MC((s,h),A2, µ));
Other Boolean operators are treated analogously.

(∗ case) If A = A1 ∗ A2, then return ⊥ if there are no h1,h2

such that h = h1 ∗ h2 and MC((s,h1),A1, µ) and
MC((s,h2),A2, µ));

(−∗ case) If A = A1−∗A2, then return ⊥ if for some small
disjoint heap h′ with respect to µ and (s,h)
verifying MC((s,h′),A1, µ), we have not
MC((s,h ∗ h′),A2, µ);

Return ⊤;
18

Ingredients for the PSPACE upper bound

• Recursion depth is linear in |A|.

• Quantifications are over sets of exponential size in
|A|+ sizeVarµ,Labµ((s,h)) where µA = (wA,Labµ,Varµ).

• So, all the heaps considered in the algorithm are of
polynomial-size in |A|+ sizeVarµ,Labµ((s,h)).

19

Correctness
• Given A with µA ≤ µ, we show (s,h) |= A iff

MC((s,h),A, µ) returns ⊤.

• Whenever (s,h) 6|= A1−∗A2, there is h0 ⊥ h such that
(s,h0) |= A1 and (s,h ∗ h0) 6|= A2.

• We have seen that there is a small disjoint heap h′
0 with

respect to µ and (s,h) such that (s,h′
0) ≃µ (s,h0).

• Since the measure of A1 is less than µ, Soundness
Lemma implies (s,h′

0) |= A1.

• By Congruence Lemma, (s,h ∗ h′
0) 6|= A2.

• Hence, (s,h) 6|= A1−∗A2 iff there is a small heap h′
0 such

that (s,h′
0) |= A1 and (s,h ∗ h′

0) 6|= A2.

20

Summary

• Model-checking problem is in PSPACE.

• Satisfiability can be reduced to model-checking in
logspace.

• A is satisfiable iff there is (s,h) such that (s,h) |= A,
card(dom(h)) ≤ size(A) and ran(s) ⊆ {0, . . . , size(A)}.

• Satisfiability problem is in PSPACE.

• PSPACE-hardness is by reducing QBF.
[Calcagno & Yang & O’Hearn, FSTTCS 01]

21

Decidability status of first-order SL with a unique
individual variable?

• Formulae:

A := ¬A | A∧A | ∃xUnique A | x →֒ y | x = y | A ∗A | A−∗A

• (s,h) |= ∃xUnique A iff there is l ∈ N such that
(s[xUnique 7→ l],h) |= A.

• What is the right set of test formulae ?

22

Work in progress
• Suggestions for test formulae (apart from those of SL):

• alloc−1(xi): ∃xU xU →֒ xi
• ∃selfloop: ∃xU xU →֒ xU

• toloop(xi): ∃xU xi →֒ xU ∧ xU →֒ xU
• ♯selfloops ≥ k : ∃selfloop ∗ · · · ∗ ∃selfloop (k times)
• inbetween1(xi ,xj): ∃xU xi →֒ xU ∧ xU →֒ xj
• inbetween2(xi ,xj): ∃xU xi →֒ xU ∧ xj →֒ xU
• ♯xi ≥ k : alloc−1(xi) ∗ · · · ∗ alloc

−1(xi) (k times)
• Le petit dernier toalloc(xi):

∃xU xi →֒ xU ∧ (xU →֒ null)−∗⊥

• More atomic formulae? complexity if this works?

• Is it possible to eliminate quantifiers syntactically ?

• Generalization to other types of memory cells ?

• Which other macros defined from ∃ can we add while
preserving decidability ? 23

Tasks in DYNRES

• Is first-order SL restricted to one variable decidable?
(see Task 2.3 “Decidable fragments”)

• Tableaux calculus for SL restricted to one variable, if
decidable?
(see Task 3 “Proof Systems for Separation and Update
Logics”)

• Automata-based decision procedures for known decidable
fragments of SL?
(see Task 3.1 “Structures, calculi and automata”)

24

