

TYPES team

LORIA – CNRS Nancy, France

ANR-Dynres, Nancy, France

Separation Logic

- Introduced by Reynolds&O'Hearn 01 to model:
 - a resource logic
 - properties of the memory space (cells)
 - aggregation of cells into wider structures
- Combines:
 - classical logic connectives: \land , \lor , \rightarrow ...
 - multiplicative conjunction: *
- Defined via Kripke semantics extended by:

 $m \Vdash A * B$ iff $\exists a, b \text{ s.t. } a, b \triangleright m \land a \Vdash A \land b \Vdash B$

Separation models

- Decomposition $a, b \triangleright m$ interpreted in various structures:
 - stacks in pointer logic (Reynolds&O'Hearn&Yang 01), $a \uplus b \subseteq m$
 - but also $a \uplus b = m$ (Calcagno&Yang&O'Hearn 01)
 - trees in spatial logics (Calcagno&Cardelli&Gordon 02) $a \mid b \equiv m$
 - resource trees in BI-Loc (Biri&Galmiche07)
- Separation Algebra (SA): partial and cancellative comm. monoid
- Additive \rightarrow can be Boolean (pointwise) or intuitionistic

BI Logic continued

- In BI, decomposition interpreted by $a \circ b \leqslant m$:
 - resource monoids (partial, ordered)
 - intuitionistic additives and relevant multiplicatives
- BI has proof systems:
 - cut-free bunched sequent calculus (Pym 99)
 - resource tableaux (Galmiche&Mery&Pym 05)
 - inverse method (Donnelly&Gibson et al. 04)
- Additives are intuitionistic in BI, mostly Boolean in Separation Logic

Boolean BI (BBI)

- Loosely defined by Pym as $\mathsf{BI} + \{\neg \neg A \rightarrow A\}$
 - no known pure sequent based proof system
 - Kripke semantics by ND-monoids (Larchey&Galmiche 06)
 - Display Logic based cut-free proof-system (Brotherston 09)
- Other definition (logical core of Separation and Spatial logics)
 - additive implication \rightarrow Kripke interpreted pointwise
 - based on partial (commutative) monoids (\mathcal{M},\circ,e)
 - has a sound and complete (labelled tableaux) proof-system
- two different logics, both undecidable (Larchey&Galmiche 10)

In this talk

- We focus on provability, not validity checking (specific model).
- Tools for propositional tautologies in partial monoidal BI and BBI
 - BI defined by partially ordered partial monoids
 - BBI defined by partial monoids
- Common methodology for BI/BBI
 - words and constraints based Kripke models
 - labels and contraints based tableaux calculi
- Properties of proof-search based models
 - resources graphs in BI
 - normal representations for BBI

Labelled tableaux for **BI** and **BBI**

- Statements $(\mathbb{T}A:m,\mathbb{F}B:n)$ and assertions (ass:m+n)
- Requirements (req : m R n) with $R = \sqsubseteq$ or \sim (side condition)
- Tableaux expansion rules for I and *:

Т

Assertions and proof-search

•
$$\mathcal{C} = \{\ldots, x_i - y_i, \ldots\}$$
 from γ

•
$$A_{\gamma} = A_{\mathcal{C}} = \{c \in L \mid c \text{ occurs in } \mathcal{C}\}$$

•
$$\sqsubseteq_{\gamma} = \sqsubseteq_{\mathcal{C}}$$
 and $\sim_{\gamma} = \sim_{\mathcal{C}}$

$$(a,b
ot\in A_\gamma)$$

$$egin{aligned} &-\mathcal{C}' = \mathcal{C} \cup \{ab
eq m\} \ &- &\equiv_{\gamma}' = &\equiv_{\gamma} + \{ab
eq m\} \ (\mathsf{BI}) \ &- &\sim_{\gamma}' = &\sim_{\gamma} + \{ab
eq m\} \ (\mathsf{BBI}) \end{aligned}$$

Requirements and proof-search

•
$$C = \{\ldots, x_i - y_i, \ldots\}$$
 from γ

•
$$A_{\gamma} = A_{\mathcal{C}} = \{c \in L \mid c \text{ occurs in } \mathcal{C}\}$$

•
$$\sqsubseteq_{\gamma} = \sqsubseteq_{\mathcal{C}}$$
 and $\sim_{\gamma} = \sim_{\mathcal{C}}$

$$- \ x,y \, ext{ s.t. } xy \sqsubseteq_{\gamma} m \, \, (\mathsf{BI})$$

$$-x,y$$
 s.t. $xy\sim_{\gamma}m$ (BBI)

$$- \sqsubseteq_{\gamma_A} = \sqsubseteq_{\gamma_B} = \sqsubseteq_{\gamma}$$
 (BI)
 $- \sim_{\gamma_A} = \sim_{\gamma_B} = \sim_{\gamma}$ (BBI)

Closure condition for proof-search

•
$$C = \{\dots, x_i \neq y_i, \dots\}$$
 from γ
• $A_{\gamma} = A_{\mathcal{C}} = \{c \in L \mid c \text{ occurs in } \mathcal{C}\}$
• $\sqsubseteq_{\gamma} = \sqsubseteq_{\mathcal{C}}$ and $\sim_{\gamma} = \sim_{\mathcal{C}}$

$$- m \sqsubseteq_{\gamma} n (\mathsf{BI})$$

- $m\sim_{\gamma} n$ (BBI)

Checking the requirement

- $\mathcal{K} = \{c d, a_0 a_1 c, b_0 a_0 c_0, \epsilon c_0, b_1 a_1 c_1, \epsilon c_1\}$
- We check the requirement $b_0 b_1 c \sim_{\mathcal{K}} \epsilon$ by solving \mathcal{K}
- $\{c, d, a_0, a_1, b_0, b_1, c_0, c_1\}^* / \sim_{\mathcal{K}} \text{isomorphic to } \mathbb{Z} \times \mathbb{Z} \text{ with:}$

$$egin{aligned} c_0 &= c_1 = \epsilon = (0,0) & a_0 = -b_0 = (1,0) \ c &= d = (1,1) & a_1 = -b_1 = (0,1) \end{aligned}$$

- $b_0 b_1 c \sim_{\mathcal{K}} \epsilon$ because (-1, 0) + (0, -1) + (1, 1) = (0, 0)
- Remark: the solution of the (finite) set \mathcal{K} is infinite

Algorithm to compute invertible letters

Require: A list C of constraints $[\ldots, m + n, \ldots]$ Ensure: $N(C) = (I, \sigma, D, \mathcal{E})$ terminates $I \leftarrow \emptyset, \sigma \leftarrow \lambda x. x, D \leftarrow [], \mathcal{E} \leftarrow C$ while choose $m + n \in \mathcal{E}$ s.t. $(m \in I^* \text{ or } n \in I^*)$ do $I \leftarrow I \cup A_m \cup A_n, \sigma \leftarrow \varphi(\sigma, I, m + n)$ $D \leftarrow D @ [m + n], \mathcal{E} \leftarrow \mathcal{E} \setminus (m + n)$ end while return $(I, \sigma, D, \mathcal{E})$

- Underlying sets: $C = D \cup E$
- Discriminate invertible/non-invertible letters: $I_{\mathcal{C}} = I = A_{\mathcal{D}}$
- $\sigma: L \longrightarrow L^{\star}$ an inverse substitution: $i\sigma(i) \sim \epsilon$ for $i \in I^{\star}$
- If $m + n \in \mathcal{D}$ then $m, n \in I^{\star}$
- If $m n \in \mathcal{E}$ then $m, n \not\in I^{\star}$ (hence $\epsilon m \notin \mathcal{E}$)

Representation for group PMEs

- Let us consider the finite $\mathcal{C} = \{m_k n_k \mid k \in [1, n]\}$
- In a group PME, all (defined) letters invertible: $A_{\mathcal{C}} = I_{\mathcal{C}} = I$
- Embed I^* in \mathbb{Z}^I (vectors with non-negative coordinates)

• Define the sub-module
$$\mathbb{Z}_\mathcal{C} = \sum_{k=1}^n \mathbb{Z}(n_k - m_k)$$

- We obtain the isomorphism: $A_{\mathcal{C}}^{\star}/\sim_{\mathcal{C}} \simeq \mathbb{Z}^{I}/\mathbb{Z}_{\mathcal{C}}$
- Compute the Smith normal form of a matrix of integers

Primary extensions of PMEs

- Given a PME $\sim, m \sim m, \, \alpha \neq \epsilon, \, A_{\sim} \cap A_{\alpha} = \emptyset$ and $ll \not\prec \alpha$
- The two following a primary extension:

$$-\sim+\left\{ lpha extsf{--}m
ight\} extsf{ if }m
ot\in I_{\sim}^{\star}$$

- $\sim + \{ \alpha m b \} \text{ if } b \notin A_{\sim} \cup A_{\alpha}$
- Primary extensions preserves the two following properties:
 - invertible squares, i.e. $ll \sim ll \Rightarrow l \in I_{\sim}$
 - cancellativity, i.e. $kx \sim ky \Rightarrow x \sim y$
- Both properties hold for a group PME
- Primary PME: list of primary extensions of a group PME

Properties of basic PMEs

- Any basic PME can be obtained as a primary PME
- Basics PMEs have invertible squares and cancellativity
- Hence, counter-models obtained by proof-search are cancellative
- The tableau method is sound & complete for Separation Algebras

