# Tableaux with constraints for separation logics 

TYPES team

LORIA - CNRS<br>Nancy, France

ANR-Dynres, Nancy, France

## Separation Logic

- Introduced by Reynolds\&O'Hearn 01 to model:
- a resource logic
- properties of the memory space (cells)
- aggregation of cells into wider structures
- Combines:
- classical logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative conjunction: *
- Defined via Kripke semantics extended by:

$$
m \Vdash A * B \quad \text { iff } \quad \exists a, b \text { s.t. } a, b \triangleright m \wedge a \Vdash A \wedge b \Vdash B
$$

## Separation models

- Decomposition $a, b \triangleright m$ interpreted in various structures:
- stacks in pointer logic (Reynolds\&O'Hearn\&Yang 01), $a \uplus b \subseteq m$
- but also $a \uplus b=m$ (Calcagno\&Yang\&O'Hearn 01)
- trees in spatial logics (Calcagno\&Cardelli\&Gordon 02) $a \mid b \equiv m$
- resource trees in BI-Loc (Biri\&Galmiche07)

- Separation Algebra (SA): partial and cancellative comm. monoid
- Additive $\rightarrow$ can be Boolean (pointwise) or intuitionistic


## Bunched Implication logic (BI)

- Introduced by Pym 99, 02
- intuitionistic logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative connectives of MILL: *, $\rightarrow$, I
- sound and complete bunched sequent calculus, with cut elimination
- Kripke semantics (Pym\&O'Hearn 99, Galmiche\&Mery\&Pym 02)
- partially ordered partial commutative monoids ( $\mathcal{M}, \circ, \leqslant$ )
- intuitionistic Kripke semantics for additives
- relevant Kripke semantics for multiplicatives
- sound and complete Kripke semantics for BI


## BI Logic continued

- In BI , decomposition interpreted by $a \circ b \leqslant m$ :
- resource monoids (partial, ordered)
- intuitionistic additives and relevant multiplicatives
- BI has proof systems:
- cut-free bunched sequent calculus (Pym 99)
- resource tableaux (Galmiche\&Mery\&Pym 05)
- inverse method (Donnelly\&Gibson et al. 04)
- Additives are intuitionistic in BI, mostly Boolean in Separation Logic


## Boolean BI (BBI)

- Loosely defined by Pym as $\mathrm{BI}+\{\neg \neg A \rightarrow A\}$
- no known pure sequent based proof system
- Kripke semantics by ND-monoids (Larchey\&Galmiche 06)
- Display Logic based cut-free proof-system (Brotherston 09)
- Other definition (logical core of Separation and Spatial logics)
- additive implication $\rightarrow$ Kripke interpreted pointwise
- based on partial (commutative) monoids ( $\mathcal{M}, \circ, \mathrm{e}$ )
- has a sound and complete (labelled tableaux) proof-system
- two different logics, both undecidable (Larchey\&Galmiche 10)


## In this talk

- We focus on provability, not validity checking (specific model).
- Tools for propositional tautologies in partial monoidal BI and BBI
- BI defined by partially ordered partial monoids
- BBI defined by partial monoids
- Common methodology for $\mathrm{BI} / \mathrm{BBI}$
- words and constraints based Kripke models
- labels and contraints based tableaux calculi
- Properties of proof-search based models
- resources graphs in BI
- normal representations for BBI


## Words and constraints based models for $\mathrm{BI} / \mathrm{BBI}$

- Resources as Words of $L^{\star}=$ multisets of letters
- Constraints $=($ ordered $)$ pairs of words: $m-n$ with $m, n \in L^{\star}$
- Partial monoidal order $\sqsubseteq(P M O)$ or equivalence $\sim(P M E)$

| PMOs | PMEs | PMOs \& PMEs |  |
| :---: | :---: | :---: | :---: |
| $\frac{x+y}{x-x}\langle l\rangle$ | $\frac{x+y}{y-x}\langle s\rangle$ | $\frac{k y+k y}{\epsilon-\epsilon}\langle\epsilon\rangle$ | $\frac{k+y}{k x-k y}\langle c\rangle$ |
| $\frac{x-y}{y-y}\langle r\rangle$ |  | $\frac{x y+x y}{x+x}\langle d\rangle$ | $\frac{x+y}{x+z}\langle t\rangle$ |

- $\langle s\rangle+\langle t\rangle$ implies $\langle l\rangle$ and $\langle r\rangle$, hence a PME is also a PMO
- Constraints solving: given $\mathcal{C}$, compute the closure $\sqsubseteq_{\mathcal{C}} / \sim_{\mathcal{C}}$ ?


## Constraints based Kripke models for BI/BBI

- $R \equiv \sqsubseteq$ for $\mathrm{BI} / R \equiv \sim$ for BBI
- Usual (pointwise) Kripke interpretation for $\wedge, \vee, \perp$ and $T$

| $m \Vdash_{R} \quad$ । iff $\in R m$ |  |
| :---: | :---: |
| $\mathrm{BI} / \mathrm{BBI}$ | $m \Vdash_{R} A * B \quad$ iff $\exists x, y x y R m \wedge x \Vdash_{R} A \wedge y \Vdash_{R} B$ |
|  | $m \Vdash_{R} A \rightarrow B \quad$ iff $\quad \forall x, y\left(x m R y \wedge x \Vdash_{R} A\right) \Rightarrow y \Vdash_{R} B$ |
| BI | $m \Vdash_{\sqsubseteq} A \rightarrow B \quad$ iff $\quad \forall x\left(m \sqsubseteq x \wedge x \Vdash_{\sqsubseteq} A\right) \Rightarrow x \Vdash_{\sqsubseteq} B$ |
| BBI | $m \Vdash_{\sim} A \rightarrow B$ iff $m \Vdash_{\sim} A \Rightarrow m \Vdash_{\sim} B$ |
|  | $m \Vdash_{\sim} \neg A$ iff $m \nVdash_{\sim} A$ |

## Complete constraints based Kripke semantics

- Quotient monoids:
$-L^{\star} / \sqsubseteq=$ partially ordered partial monoid
$-L^{\star} / \sim=$ partial monoid
- These quotient maps $\sqsubseteq \mapsto L^{\star} / \sqsubseteq$ and $\sim \mapsto L^{\star} / \sim$ are full:
- any partially ordered partial monoid is of the form $L^{\star} / \sqsubseteq$
- any partial monoid is of the form $L^{\star} / \sim$
- Completeness theorem:
- $\Vdash^{\sqsubseteq}$ sound and complete Kripke semantics for BI
$-\Vdash \sim$ sound and complete Kripke semantics for BBI


## Labelled tableaux for BI and BBI

- Statements $(\mathbb{T} A: m, \mathbb{F} B: n)$ and assertions (ass: $m-n$ )
- Requirements (req : $m R n$ ) with $R=\sqsubseteq$ or $\sim$ (side condition)
- Tableaux expansion rules for I and $*$ :

| $\mathbb{T} \mid: m$ | $\mathbb{T} A * B: m$ | $\mathbb{F} A * B: m$ |
| :---: | :---: | :---: |
| $\mid$ | $\mid$ | $\mid$ |
| ass $: \epsilon \rightarrow m$ | ass $: a b-m$ | req:xy $R m$ |
| $\mathbb{T} A: a$ | $\mathbb{F} A: x \quad \mathbb{F} B: y$ |  |
| $\mathbb{T} B: b$ |  |  |

- Tableaux expansion rules for $-*$ :

- Tableaux expansion rules for $\rightarrow$ (only BI):



## Assertions and proof-search

ass : $x_{i}-y_{i}$
$\vdots$
$\sqrt{ } \mathbb{T} A * B: m$
$\vdots$
ass $: a b-m$
$\mathbb{T} A: a$
$\mathbb{T} B: b$
$\mid$
$\gamma^{\prime}$

ss: $a b-m$
$\mathbb{T} A: a$
$\mathbb{T} B: b$

$$
\gamma^{\prime}
$$

- $\mathcal{C}=\left\{\ldots, x_{i}-y_{i}, \ldots\right\}$ from $\gamma$
- $A_{\gamma}=A_{\mathcal{C}}=\{c \in L \mid c$ occurs in $\mathcal{C}\}$
- $\sqsubseteq_{\gamma}=\sqsubseteq_{\mathcal{C}}$ and $\sim_{\gamma}=\sim_{\mathcal{C}}$
- branch expansion
$-a \neq b$ new $\left(a, b \notin A_{\gamma}\right)$
$-\mathcal{C}^{\prime}=\mathcal{C} \cup\{a b-m\}$
$-\sqsubseteq_{\gamma}{ }^{\prime}=\sqsubseteq_{\gamma}+\{a b-m\}$ (BI)
$-\sim_{\gamma}{ }^{\prime}=\sim_{\gamma}+\{a b-m\}$ (BBI)


## Requirements and proof-search

- $\mathcal{C}=\left\{\ldots, x_{i}-y_{i}, \ldots\right\}$ from $\gamma$
- $A_{\gamma}=A_{\mathcal{C}}=\{c \in L \mid c$ occurs in $\mathcal{C}\}$

- $\sqsubseteq_{\gamma}=\sqsubseteq_{\mathcal{C}}$ and $\sim_{\gamma}=\sim_{\mathcal{C}}$
- branch expansion
$-x, y$ s.t. $x y \sqsubseteq_{\gamma} m(\mathrm{BI})$
$-x, y$ s.t. $x y \sim_{\gamma} m$ (BBI)
$-\sqsubseteq_{\gamma_{A}}=\sqsubseteq_{\gamma_{B}}=\sqsubseteq_{\gamma}(\mathrm{BI})$
$-\sim_{\gamma_{A}}=\sim_{\gamma_{B}}=\sim_{\gamma}(\mathrm{BBI})$


## Closure condition for proof-search

ass $: x_{i} \rightarrow y_{i}$
$\mathbb{T} X: m$

$\mathbb{F} X: n$
$\vdots$
$\begin{array}{r}\gamma \\ \hline\end{array}$
$\times$

- $\mathcal{C}=\left\{\ldots, x_{i}-y_{i}, \ldots\right\}$ from $\gamma$
- $A_{\gamma}=A_{\mathcal{C}}=\{c \in L \mid c$ occurs in $\mathcal{C}\}$
- $\sqsubseteq_{\gamma}=\sqsubseteq_{\mathcal{C}}$ and $\sim_{\gamma}=\sim_{\mathcal{C}}$
- branch closure
$-m \sqsubseteq_{\gamma} n(\mathrm{BI})$
$-m \sim_{\gamma} n(\mathrm{BBI})$


## BBI proof of $(\mathrm{J} * \mathrm{~J}) \rightarrow \mathrm{J}$ with $\mathrm{J}=\neg(\mathrm{T} \rightarrow \neg \neg \mathrm{I})$

| asso : $c \rightarrow d$ | $\gamma_{0}$ |
| :---: | :---: |
| $\sqrt{1}^{\mathbb{F}}(\mathrm{J} * \mathrm{~J}) \rightarrow \mathrm{J}: c$ | $\mathrm{ass}_{4}: b_{0} a_{0}-c_{0}$ |
| $\sqrt{ } 2 \mathbb{T} J * J: c$ | $\mathbb{T} \top: b_{0}$ |
| $\sqrt{11}^{\mathbb{F J}: c}$ | $\underset{\mid}{\sqrt{5}} \underset{\mid}{\mathbb{F}} \neg c_{0}$ |
| $\mathrm{ass}_{2}: a_{0} a_{1} \rightarrow c$ | $\begin{gathered} \sqrt{ }{ }_{6} \mathbb{T}: c_{0} \\ \end{gathered}$ |
| $\begin{gathered} \sqrt{ } 3 \mathbb{T} \neg(\top \rightarrow \neg): a_{0} \\ \sqrt{ }{ }_{7} \mathbb{T} \mathrm{~J}: a_{1} \end{gathered}$ | $\operatorname{ass}_{6}: \epsilon-c_{0}$ |
|  | $\operatorname{asss}_{8}: b_{1} a_{1}-c_{1}$ |
| $\sqrt{ } 4 \mathbb{F} \top \rightarrow \neg \neg: a_{0}$ | $\operatorname{ass}_{10}: \epsilon \rightarrow c_{1}$ |
| $\gamma_{0}$ | $\gamma_{1}$ |



- with $\mathcal{K}=\left\{c-d, a_{0} a_{1}-c, b_{0} a_{0}-c_{0}, \epsilon-c_{0}, b_{1} a_{1}-c_{1}, \epsilon-c_{1}\right\}$


## Checking the requirement

- $\mathcal{K}=\left\{c-d, a_{0} a_{1}-c, b_{0} a_{0}-c_{0}, \epsilon-c_{0}, b_{1} a_{1}-c_{1}, \epsilon-c_{1}\right\}$
- We check the requirement $b_{0} b_{1} c \sim_{\mathcal{K}} \in$ by solving $\mathcal{K}$
- $\left\{c, d, a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}\right\}^{\star} / \sim_{\mathcal{K}}$ isomorphic to $\mathbb{Z} \times \mathbb{Z}$ with:

$$
\begin{array}{cl}
c_{0}=c_{1}=\epsilon=(0,0) & a_{0}=-b_{0}=(1,0) \\
c=d=(1,1) & a_{1}=-b_{1}=(0,1)
\end{array}
$$

- $b_{0} b_{1} c \sim_{\mathcal{K}} \in$ because $(-1,0)+(0,-1)+(1,1)=(0,0)$
- Remark: the solution of the (finite) set $\mathcal{K}$ is infinite


## Tableaux completeness and counter-models

- Labels and constraints based methods:
- calculi with constraints: $\mathbb{T} A: m, \mathbb{F} B: n, m-n$
- sound/complete proof-search method for tautologies of $\mathrm{BI} / \mathrm{BBI}$
- counter-models from open \& saturated proof-search branch
- Why study the counter-models generated by proof-search:
- implement/optimize proof assistants
- extract complete sub-classes of counter-models (eg. SA)


## PMO extensions in BI-tableaux (i)

- $a$ and $b$ are new letters ( $a \nsubseteq a$ and $b \nsubseteq b)$
- $m$ defined in $\sqsubseteq(m \sqsubseteq m)$
- Four types of extensions

$$
\begin{array}{ll}
\sqsubseteq^{\prime}=\sqsubseteq+\{a b-m\} \quad(\text { rule } \mathbb{T} *) & \sqsubseteq^{\prime}=\sqsubseteq+\{a m-b\} \quad(\text { rule } \mathbb{F}-*) \\
\left.\sqsubseteq^{\prime}=\sqsubseteq+\{m-b\} \quad(\text { rule } \mathbb{F} \rightarrow) \quad \sqsubseteq^{\prime}=\sqsubseteq+\{\epsilon-m\} \quad \text { (rule } \mathbb{T} \mid\right)
\end{array}
$$

- Basic $\mathrm{PMO}=$ finite sequence of such extensions
- Extensions can be solved:

$$
\begin{aligned}
\sqsubseteq+\{a b-m\}=\sqsubseteq & \cup\{a x-a y \mid x \sqsubseteq y \text { and } m x \sqsubseteq m y\} \\
& \cup\{b x-b y \mid x \sqsubseteq y \text { and } m x \sqsubseteq m y\} \\
& \cup\{a b x-y \mid m x \sqsubseteq y\}
\end{aligned}
$$

## PMO extensions in Bl-tableaux (ii)

- Properties of basic PMO $\sqsubseteq_{\mathcal{C}}$ (by induction on $\mathcal{C}$ ):
$-\epsilon$-minimality: if $m \sqsubseteq_{\mathcal{C}} \epsilon$ then $m=\epsilon$
- no square: if $m m \sqsubseteq_{\mathcal{C}} m m$ then $m=\epsilon$
- cancellativity: if $k x \sqsubseteq_{\mathcal{C}} k y$ then $x \sqsubseteq_{\mathcal{C}} y$
$\Rightarrow$ finiteness: $\left\{m \in L^{\star} \mid m \sqsubseteq_{\mathcal{C}} m\right\}$ is finite ( $\mathcal{C}$ finite sequence)
- Solving constraints in $\mathcal{C}$ : (finite) resource graph (Mery 04)
- Complete sub-class for BI :
- these properties hold for infinite sequences of basic extensions
- cancellative monoids where $\epsilon$ is minimal and without square


## PME extensions in BBI-tableaux (i)

- $a$ and $b$ are new letters, $m$ defined in $\sim$ (i.e. $m \sim m$ )
- Three types of extensions

$$
\begin{array}{ll}
\sim^{\prime}=\sim+\{a b-m\} & (\text { rule } \mathbb{T} *) \\
\sim^{\prime} & =\sim+\{a m-b\} \\
\sim^{\prime} & =\sim+\{\epsilon-m\} \\
(\text { rule } \mathbb{F}-*) \\
(\text { rule } \mathbb{T} \mid)
\end{array}
$$

- Basic $P M E=$ finite sequence of such extensions
- Extensions $a b-m($ and $a m-b)$ solved when $m m \nsim m m$ :

$$
\begin{aligned}
\sim+\{a b-m\}=\sim & \cup\{a x-a y, b x-b y \mid x \sim y \text { and } m x \sim m y\} \\
& \cup\{a b x-a b y \mid m x \sim m y\} \\
& \cup\{a b x-y, y-a b x \mid m x \sim y\}
\end{aligned}
$$

## PME extensions in BBI-tableaux (ii)

- Problems with the $\sim+\{\epsilon \rightarrow m\}$ extension:
- does not preserve cancellativity
- introduce squares: if $\epsilon \sim m$ then $m m \sim m m$ (not nec. $m=\epsilon$ )
$\Rightarrow$ Invertible letters produce infinite models (not as in BI )

$$
I_{\sim}=\left\{i \in L \mid \epsilon \sim i m \text { holds for some } m \in L^{\star}\right\}
$$

- No simple solution for $\sim+\{a b-m\}$ when $m m \sim m m$
- Not the same as the word problem in Thue systems (partiality)


## How to compute the invertible letters?

- Given a (finite) sequence $\mathcal{C}=\{\ldots, m-n, \ldots\}$
- Compute $I_{\mathcal{C}}$ the set of invertible letters of $\sim_{\mathcal{C}}$

$$
I_{\mathcal{C}}=\left\{i \in L \mid \epsilon \sim_{\mathcal{C}} \text { im holds for some } m \in L^{\star}\right\}
$$

- Solution by fixpoint:
- start with $I_{\mathcal{C}}=\emptyset$ and saturate with
- if $\alpha-\beta \in \mathcal{C}$ and $\alpha \in I_{\mathcal{C}}^{\star}$ then $\beta \in I_{\mathcal{C}}^{\star}$
- if $\alpha-\beta \in \mathcal{C}$ and $\beta \in I_{\mathcal{C}}^{\star}$ then $\alpha \in I_{\mathcal{C}}^{\star}$
- If $\mathcal{C}$ does not contain $m-\epsilon$ or $\epsilon-n$ then $I_{\mathcal{C}}=\emptyset$


## Algorithm to compute invertible letters

$$
\begin{aligned}
& \text { Require: A list } \mathcal{C} \text { of constraints }[\ldots, m-n, \ldots] \\
& \text { Ensure: } N(\mathcal{C})=(I, \sigma, \mathcal{D}, \mathcal{E}) \text { terminates } \\
& I \leftarrow \emptyset, \sigma \leftarrow \lambda x . x, \mathcal{D} \leftarrow[], \mathcal{E} \leftarrow \mathcal{C} \\
& \text { while choose } m-n \in \mathcal{E} \text { s.t. }\left(m \in I^{\star} \text { or } n \in I^{\star}\right) \text { do } \\
& \quad I \leftarrow I \cup A_{m} \cup A_{n}, \sigma \leftarrow \varphi(\sigma, I, m-n) \\
& \quad \mathcal{D} \leftarrow \mathcal{D} @[m-n], \mathcal{E} \leftarrow \mathcal{E} \backslash(m-n) \\
& \text { end while } \\
& \text { return }(I, \sigma, \mathcal{D}, \mathcal{E})
\end{aligned}
$$

- Underlying sets: $\mathcal{C}=\mathcal{D} \cup \mathcal{E}$
- Discriminate invertible/non-invertible letters: $I_{\mathcal{C}}=I=A_{\mathcal{D}}$
- $\sigma: L \longrightarrow L^{\star}$ an inverse substitution: $i \sigma(i) \sim \epsilon$ for $i \in I^{\star}$
- If $m \rightarrow n \in \mathcal{D}$ then $m, n \in I^{\star}$
- If $m-n \in \mathcal{E}$ then $m, n \notin I^{\star}$ (hence $\epsilon-m \notin \mathcal{E}$ )


## Representation for group PMEs

- Let us consider the finite $\mathcal{C}=\left\{m_{k}-n_{k} \mid k \in[1, n]\right\}$
- In a group PME, all (defined) letters invertible: $A_{\mathcal{C}}=I_{\mathcal{C}}=I$
- Embed $I^{\star}$ in $\mathbb{Z}^{I}$ (vectors with non-negative coordinates)
- Define the sub-module $\mathbb{Z}_{\mathcal{C}}=\sum_{k=1}^{n} \mathbb{Z}\left(n_{k}-m_{k}\right)$
- We obtain the isomorphism: $A_{\mathcal{C}}^{\star} / \sim_{\mathcal{C}} \simeq \mathbb{Z}^{I} / \mathbb{Z}_{\mathcal{C}}$
- Compute the Smith normal form of a matrix of integers


## Primary extensions of PMEs

- Given a PME $\sim, m \sim m, \alpha \neq \epsilon, A_{\sim} \cap A_{\alpha}=\emptyset$ and $l l \nprec \alpha$
- The two following a primary extension:
$-\sim+\{\alpha-m\}$ if $m \notin I_{\sim}^{\star}$
$-\sim+\{\alpha m-b\}$ if $b \notin A_{\sim} \cup A_{\alpha}$
- Primary extensions preserves the two following properties:
- invertible squares, i.e. $l l \sim l l \Rightarrow l \in I \sim$
- cancellativity, i.e. $k x \sim k y \Rightarrow x \sim y$
- Both properties hold for a group PME
- Primary PME: list of primary extensions of a group PME


## Properties of basic PMEs

- Any basic PME can be obtained as a primary PME
- Basics PMEs have invertible squares and cancellativity
- Hence, counter-models obtained by proof-search are cancellative
- The tableau method is sound \& complete for Separation Algebras


## Normal representation for primary PMEs

- Let $\sim$ be a PME
- ( $I, N, \mathcal{C}, h)$ is a normal representation for $\sim$ if:
$-I$ and $N$ are finite subsets of $L$
$-I_{\sim}=I, A_{\sim}=I \cup N$ and $I \cap N=\emptyset$
$-\mathcal{C}$ is a finite set of constraints such that $A_{\mathcal{C}} \subseteq I$
$-h: N^{\star} \times N^{\star} \longrightarrow_{\mathrm{f}} \mathbb{Z}^{I}$ is a partially and finitely defined map
- for every $i, j \in I^{\star}$ and $x, y \in N^{\star}$ :

$$
i x \sim j y \quad \text { iff } \quad j-i \in h_{x, y}+\mathbb{Z}_{\mathcal{C}}
$$

