
'

&

$

%

Tableaux with constraints for separation logics

TYPES team

LORIA { CNRS

Nancy, France

ANR-Dynres, Nancy, France

1

'

&

$

%

Separation Logic

� Introduced by Reynolds&O'Hearn 01 to model:

– a resource logic

– properties of the memory space (cells)

– aggregation of cells into wider structures

� Combines:

– classical logic connectives: ∧, ∨, → . . .

– multiplicative conjunction: ∗

� De�ned via Kripke semantics extended by:

m A ∗B i� ∃a; b s.t. a; b . m ∧ a A ∧ b B

2

'

&

$

%

Separation models

� Decomposition a; b . m interpreted in various structures:

– stacks in pointer logic (Reynolds&O'Hearn&Yang 01),

a] b ⊆ m

– but also a] b = m (Calcagno&Yang&O'Hearn 01)

– trees in spatial logics (Calcagno&Cardelli&Gordon 02)

a | b ≡ m

– resource trees in BI-Loc (Biri&Galmiche07)
l1

l2

m1

l3

m2

� Separation Algebra (SA): partial and cancellative comm. monoid

� Additive → can be Boolean (pointwise) or intuitionistic

3

'

&

$

%

Bunched Implication logic (BI)

� Introduced by Pym 99, 02

– intuitionistic logic connectives: ∧, ∨, → . . .

– multiplicative connectives of MILL: ∗, −∗, I

– sound and complete bunched sequent calculus, with cut

elimination

� Kripke semantics (Pym&O'Hearn 99, Galmiche&Mery&Pym 02)

– partially ordered partial commutative monoids (M; ◦;6)

– intuitionistic Kripke semantics for additives

– relevant Kripke semantics for multiplicatives

– sound and complete Kripke semantics for BI

4

'

&

$

%

BI Logic continued

� In BI, decomposition interpreted by a ◦ b 6 m:

– resource monoids (partial, ordered)

– intuitionistic additives and relevant multiplicatives

� BI has proof systems:

– cut-free bunched sequent calculus (Pym 99)

– resource tableaux (Galmiche&Mery&Pym 05)

– inverse method (Donnelly&Gibson et al. 04)

� Additives are intuitionistic in BI, mostly Boolean in Separation

Logic

5

'

&

$

%

Boolean BI (BBI)

� Loosely de�ned by Pym as BI + {¬¬A→ A}

– no known pure sequent based proof system

– Kripke semantics by ND-monoids (Larchey&Galmiche 06)

– Display Logic based cut-free proof-system (Brotherston 09)

� Other de�nition (logical core of Separation and Spatial logics)

– additive implication → Kripke interpreted pointwise

– based on partial (commutative) monoids (M; ◦; e)

– has a sound and complete (labelled tableaux) proof-system

� two di�erent logics, both undecidable (Larchey&Galmiche 10)

6

'

&

$

%

In this talk

� We focus on provability, not validity checking (speci�c model).

� Tools for propositional tautologies in partial monoidal BI and BBI

– BI de�ned by partially ordered partial monoids

– BBI de�ned by partial monoids

� Common methodology for BI/BBI

– words and constraints based Kripke models

– labels and contraints based tableaux calculi

� Properties of proof-search based models

– resources graphs in BI

– normal representations for BBI

7

'

&

$

%

Words and constraints based models for BI/BBI

� Resources as Words of L? = multisets of letters

� Constraints = (ordered) pairs of words: m−·····− n with m;n ∈ L?

� Partial monoidal order v (PMO) or equivalence ∼ (PME)

PMOs PMEs PMOs & PMEs

x−·····− y

x−·····− x
〈l〉

x−·····− y

y −·····− x
〈s〉

�−·····− �
〈�〉

ky −·····− ky x−·····− y

kx−·····− ky
〈c〉

x−·····− y

y −·····− y
〈r〉

xy −·····− xy

x−·····− x
〈d〉

x−·····− y y −·····− z

x−·····− z
〈t〉

� 〈s〉+〈t〉 implies 〈l〉 and 〈r〉, hence a PME is also a PMO

� Constraints solving: given C, compute the closure vC = ∼C ?

8

'

&

$

%

Constraints based Kripke models for BI/BBI

� R ≡ v for BI / R ≡ ∼ for BBI

� Usual (pointwise) Kripke interpretation for ∧, ∨, ⊥ and >

BI=BBI

m R I i� � R m

m R A ∗B i� ∃x; y xy R m ∧ x R A ∧ y R B

m R A−∗B i� ∀x; y (xm R y ∧ x R A)⇒ y R B

BI m v A→B i� ∀x (m v x ∧ x v A)⇒ x v B

BBI
m ∼ A→B i� m ∼ A⇒ m ∼ B

m ∼ ¬A i� m 1∼ A

9

'

&

$

%

Complete constraints based Kripke semantics

� Quotient monoids:

– L?=v = partially ordered partial monoid

– L?=∼ = partial monoid

� These quotient maps v 7→ L?=v and ∼ 7→ L?=∼ are full:

– any partially ordered partial monoid is of the form L?=v

– any partial monoid is of the form L?=∼

� Completeness theorem:

– v sound and complete Kripke semantics for BI

– ∼ sound and complete Kripke semantics for BBI

10

'

&

$

%

Labelled tableaux for BI and BBI

� Statements (TA : m, FB : n) and assertions (ass : m−·····− n)

� Requirements (req : m R n) with R = v or ∼ (side condition)

� Tableaux expansion rules for I and ∗:

TI : m

ass : �−·····−m

TA ∗B : m

ass : ab−·····−m

TA : a

TB : b

FA ∗B : m

req : xy R m
aaa

!!!

FA : x FB : y

11

'

&

$

%

� Tableaux expansion rules for −∗:

TA−∗B : m

req : xm R y
aaa
!!!

FA : x TB : y

FA−∗B : m

ass : am−·····− b

TA : a

FB : b

� Tableaux expansion rules for → (only BI):

TA→B : m

req : m v x
aaa

!!!

FA : x TB : x

FA→B : m

ass : m−·····− b

TA : b

FB : b

12

'

&

$

%

Assertions and proof-search

...

ass : xi −·····− yi
...

√
TA ∗B : m

...

ass : ab−·····−m

TA : a

TB : b

′

� C = {: : : ; xi −·····− yi; : : :} from

� A = AC = {c ∈ L | c occurs in C}

� v = vC and ∼ = ∼C

� branch expansion

– a 6= b new (a; b 6∈ A)

– C′ = C ∪ {ab−·····−m}

– v
′ = v + {ab−·····−m} (BI)

– ∼
′ = ∼ + {ab−·····−m} (BBI)

13

'

&

$

%

Requirements and proof-search

...

ass : xi −·····− yi
...

√
FA ∗B : m

...

req : xy R m
aa!!

FA : x

A

FB : y

B

� C = {: : : ; xi −·····− yi; : : :} from

� A = AC = {c ∈ L | c occurs in C}

� v = vC and ∼ = ∼C

� branch expansion

– x; y s.t. xy v m (BI)

– x; y s.t. xy ∼ m (BBI)

– vA = vB = v (BI)

– ∼A = ∼B = ∼ (BBI)

14

'

&

$

%

Closure condition for proof-search

...

ass : xi −·····− yi
TX : m

...

FX : n
...

×

� C = {: : : ; xi −·····− yi; : : :} from

� A = AC = {c ∈ L | c occurs in C}

� v = vC and ∼ = ∼C

� branch closure

– m v n (BI)

– m ∼ n (BBI)

15

'

&

$

%

BBI proof of (J ∗ J)→ J with J = ¬(>−∗ ¬I)

ass0 : c−·····− d
√
1

F(J ∗ J)→ J : c

√
2

TJ ∗ J : c
√
11

FJ : c

ass2 : a0a1 −·····− c
√
3

T¬(>−∗ ¬I) : a0
√
7

TJ : a1

√
4

F>−∗ ¬I : a0

0

0

ass4 : b0a0 −·····− c0
T> : b0

√
5

F¬I : c0

√
6

TI : c0

ass6 : �−·····− c0

ass8 : b1a1 −·····− c1
ass10 : �−·····− c1

1

1

√
12

T>−∗ ¬I : c

req12 : (b0b1)c ∼K �
PPP���

F> : b0b1

×

T¬I : �

FI : �

×

� with K = {c−·····− d; a0a1 −·····− c; b0a0 −·····− c0; �−·····− c0; b1a1 −·····− c1; �−·····− c1}

16

'

&

$

%

Checking the requirement

� K = {c−·····− d; a0a1 −·····− c; b0a0 −·····− c0; �−·····− c0; b1a1 −·····− c1; �−·····− c1}

� We check the requirement b0b1c ∼K � by solving K

� {c; d; a0; a1; b0; b1; c0; c1}?=∼K isomorphic to Z× Z with:

c0 = c1 = � = (0; 0) a0 = −b0 = (1; 0)

c = d = (1; 1) a1 = −b1 = (0; 1)

� b0b1c ∼K � because (−1; 0) + (0;−1) + (1; 1) = (0; 0)

� Remark: the solution of the (�nite) set K is in�nite

17

'

&

$

%

Tableaux completeness and counter-models

� Labels and constraints based methods:

– calculi with constraints: TA : m, FB : n, m−·····− n

– sound/complete proof-search method for tautologies of BI/BBI

– counter-models from open & saturated proof-search branch

� Why study the counter-models generated by proof-search:

– implement/optimize proof assistants

– extract complete sub-classes of counter-models (eg. SA)

18

'

&

$

%

PMO extensions in BI-tableaux (i)

� a and b are new letters (a 6v a and b 6v b)

� m de�ned in v (m v m)

� Four types of extensions

v′ = v+ {ab−·····−m} (rule T∗) v′ = v+ {am−·····− b} (rule F−∗)

v′ = v+ {m−·····− b} (rule F→) v′ = v+ {�−·····−m} (rule TI)

� Basic PMO = finite sequence of such extensions

� Extensions can be solved:

v+ {ab−·····−m} = v ∪ {ax−·····− ay | x v y and mx v my}
∪ {bx−·····− by | x v y and mx v my}
∪ {abx−·····− y | mx v y}

19

'

&

$

%

PMO extensions in BI-tableaux (ii)

� Properties of basic PMO vC (by induction on C):

– �-minimality: if m vC � then m = �

– no square: if mm vC mm then m = �

– cancellativity: if kx vC ky then x vC y

⇒ finiteness: {m ∈ L? | m vC m} is �nite (C �nite sequence)

� Solving constraints in C: (�nite) resource graph (Mery 04)

� Complete sub-class for BI:

– these properties hold for in�nite sequences of basic extensions

– cancellative monoids where � is minimal and without square

20

'

&

$

%

PME extensions in BBI-tableaux (i)

� a and b are new letters, m de�ned in ∼ (i.e. m ∼ m)

� Three types of extensions

∼′ = ∼+ {ab−·····−m} (rule T∗)

∼′ = ∼+ {am−·····− b} (rule F−∗)

∼′ = ∼+ {�−·····−m} (rule TI)

� Basic PME = finite sequence of such extensions

� Extensions ab−·····−m (and am−·····− b) solved when mm � mm :

∼+ {ab−·····−m} = ∼ ∪ {ax−·····− ay; bx−·····− by | x ∼ y and mx ∼ my}
∪ {abx−·····− aby | mx ∼ my}
∪ {abx−·····− y; y −·····− abx | mx ∼ y}

21

'

&

$

%

PME extensions in BBI-tableaux (ii)

� Problems with the ∼+ {�−·····−m} extension:

– does not preserve cancellativity

– introduce squares: if � ∼ m then mm ∼ mm (not nec. m = �)

⇒ Invertible letters produce in�nite models (not as in BI)

I∼ = {i ∈ L | � ∼ im holds for some m ∈ L?}

� No simple solution for ∼+ {ab−·····−m} when mm ∼ mm

� Not the same as the word problem in Thue systems (partiality)

22

'

&

$

%

How to compute the invertible letters ?

� Given a (�nite) sequence C = {: : : ;m−·····− n; : : :}

� Compute I C the set of invertible letters of ∼C

I C = {i ∈ L | � ∼C im holds for some m ∈ L?}

� Solution by �xpoint:

– start with I C = ∅ and saturate with

– if �−·····− � ∈ C and � ∈ I ?C then � ∈ I ?C

– if �−·····− � ∈ C and � ∈ I ?C then � ∈ I ?C

� If C does not contain m−·····− � or �−·····− n then I C = ∅

23

'

&

$

%

Algorithm to compute invertible letters

Require: A list C of constraints [: : : ;m−·····− n; : : :]

Ensure: N(C) = (I; �;D; E) terminates

I ← ∅, � ← �x:x, D ← [], E ← C
while choose m−·····− n ∈ E s.t. (m ∈ I? or n ∈ I?) do

I ← I ∪ Am ∪ An, � ← '(�; I;m−·····− n)

D ← D @ [m−·····− n], E ← E\(m−·····− n)

end while

return (I; �;D; E)

� Underlying sets: C = D ∪ E

� Discriminate invertible/non-invertible letters: I C = I = AD

� � : L−→ L? an inverse substitution: i�(i) ∼ � for i ∈ I?

� If m−·····− n ∈ D then m;n ∈ I?

� If m−·····− n ∈ E then m;n 6∈ I? (hence �−·····−m 6∈ E)

24

'

&

$

%

Representation for group PMEs

� Let us consider the finite C = {mk −·····− nk | k ∈ [1; n]}

� In a group PME, all (de�ned) letters invertible: AC = I C = I

� Embed I? in ZI (vectors with non-negative coordinates)

� De�ne the sub-module ZC =
n∑

k=1

Z(nk −mk)

� We obtain the isomorphism: A?
C=∼C ' ZI=ZC

� Compute the Smith normal form of a matrix of integers

25

'

&

$

%

Primary extensions of PMEs

� Given a PME ∼, m ∼ m, � 6= �, A∼ ∩ A� = ∅ and ll 6≺ �

� The two following a primary extension:

– ∼+ {�−·····−m} if m 6∈ I ?∼

– ∼+ {�m−·····− b} if b 6∈ A∼ ∪ A�

� Primary extensions preserves the two following properties:

– invertible squares, i.e. ll ∼ ll⇒ l ∈ I∼

– cancellativity, i.e. kx ∼ ky ⇒ x ∼ y

� Both properties hold for a group PME

� Primary PME: list of primary extensions of a group PME

26

'

&

$

%

Properties of basic PMEs

� Any basic PME can be obtained as a primary PME

� Basics PMEs have invertible squares and cancellativity

� Hence, counter-models obtained by proof-search are cancellative

� The tableau method is sound & complete for Separation Algebras

27

'

&

$

%

Normal representation for primary PMEs

� Let ∼ be a PME

� (I;N; C; h) is a normal representation for ∼ if:

– I and N are �nite subsets of L

– I∼ = I, A∼ = I ∪N and I ∩N = ∅

– C is a �nite set of constraints such that AC ⊆ I

– h : N? ×N? −*f ZI is a partially and �nitely de�ned map

– for every i; j ∈ I? and x; y ∈ N?:

ix ∼ jy i� j − i ∈ hx;y + ZC

28

