Dynamic Epistemic Logics with Quantification

Tiago de Lima

CRIL – UArtois and CNRS University Lille Nord de France

28 February 2012 Project ANR-DynRes Meeting Nancy

Outline

Public Announcement Logic

Arbitrary Public Announcement Logic

Group Announcement Logic

Alternating-time Temporal Announcement Logic

Coalition Operator

Temporal Operators

Conclusion

Syntax

- Proposed by [Plaza, ISMIS 1989]
- Vocabulary:
 - a countable set $P = \{p, q, ...\}$ of propositional variables
 - a finite set $N = \{i, j, ...\}$ of labels denoting agents
- Language \mathcal{L}_{PAL} :

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid [\varphi] \varphi$$

where p ranges over P and i over N

• Common abbreviations for \bot , \lor , \rightarrow and \leftrightarrow plus:

$$\langle \psi \rangle \varphi \stackrel{\mathrm{def}}{=} \neg [\psi] \neg \varphi$$

► The language of *epistemic logic* L_{EL} is L_{PAL} without the operator [].

Intended Meanings

- $K_i \varphi$: 'agent *i* knows that φ is true'
- $[\psi]\varphi$: 'after the truthful public announcement ψ , φ is true'
- $\langle \psi \rangle \varphi$: ' ψ can be truthfully announced and φ is true after it'

Epistemic Models and Updates

- An *epistemic model* is a triple $M = \langle W, R, V \rangle$ where:
 - W is a non-empty set of possible worlds
 - R: N → (W × W), where: for each i ∈ N, it returns an equivalence relation on W
 V: P → 2^W
- The *update* of *M* by the public announcement φ is the triple $M|\varphi = \langle W|\varphi, R|\varphi, V|\varphi \rangle$, where:

$$W|\varphi = \{w : M, w \models \varphi\}$$
$$R|\varphi(i) = R(i) \cap (W|\varphi \times W|\varphi)$$
$$V|\varphi(p) = V(p) \cap W|\varphi$$

Semantics

 $\begin{array}{ll} M,w \models \top \\ M,w \models p & \text{iff} \quad w \in V(p) \\ M,w \models \neg \varphi & \text{iff} \quad M,w \not\models \varphi \\ M,w \models \varphi \land \psi & \text{iff} \quad M,w \models \varphi \text{ and } M,w \models \psi \\ M,w \models K_i \varphi & \text{iff} \quad \text{for all } v \in W, \text{ if } (w,v) \in R(i) \text{ then } M,v \models \varphi \end{array}$

 $M, w \models [\varphi]\psi$ iff $M, w \models \varphi$ implies $M \mid \varphi, w \models \psi$

Validity and satisfiability are defined as usual.

Example

Moore sentence:

'p is true and you do not know it'

- Because the public announcement $p \land \neg K_i p$ deletes the worlds where *p* is false.
- This is called "knowability paradox". PAL can be used to model these sentences.

Axiomatization

- All principles for EL
- Reduction axioms:

$$\begin{split} & [\psi]p \leftrightarrow (\psi \to p) \\ & [\psi] \neg \varphi \leftrightarrow (\psi \to \neg [\psi]\varphi) \\ & [\psi](\varphi_1 \land \varphi_2) \leftrightarrow ([\psi]\varphi_1 \land [\psi]\varphi_2) \\ & [\psi] \mathbf{K}_i \varphi \leftrightarrow (\psi \to \mathbf{K}_i[\psi]\varphi) \end{split}$$

Some Interesting Properties

- PAL is decidable:
 - Reduction axioms plus EL decidability [Kooi, JANCL 2007]
- ▶ PAL is more succinct than EL [Lutz, AAMAS 2006].
- Satisfiability checking in PAL is PSPACE-Complete:
 - Efficient reduction [Lutz, AAMAS 2006]
 - Optimal tableaux [Balbiani et al., JLC 2010]

Syntax and Meaning

- Proposed by [Balbiani et al., RSL 2008]
- Language \mathcal{L}_{APAL} :

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid [\varphi] \varphi \mid \Box \varphi$$

- Abbreviation: $\Diamond \varphi \stackrel{\text{def}}{=} \neg \Box \neg \varphi$.
- Intended meanings:
 - $\Box \varphi$: ' φ is true after every truthful public announcement'
 - $\diamond \varphi$: ' φ is true after some truthful public announcement'

Arbitrary Public Announcement Logic Semantics

Interpretation:

$$M, w \models \Box \varphi$$
 iff for all $\psi \in \mathcal{L}_{\text{EL}}, M, w \models [\psi] \varphi$

- Quantification over \mathcal{L}_{EL} to avoid a cyclic definition of \models
- The logic can model questions like:
 - 'is there a way to make agent *i* knows that/whether φ ?'
 - 'is there a way to make agent i knows that φ while j does not know it?'
 - 'is there a way to make φ become common knowledge?'

Axiomatization 1

- All principles for PAL
- $\blacktriangleright \ \Box \varphi \to [\psi] \varphi$
- From $\eta([\psi]\varphi)$, for all $\psi \in \mathcal{L}_{EL}$, infer $\eta(\Box \varphi)$ where η is a necessity form:

$$\eta ::= \sharp \mid \varphi \to \eta \mid \mathrm{K}_i \eta \mid [\varphi] \eta$$

and $\eta(\varphi)$ is obtained from η by substituting \sharp in η by φ .

Axiomatization 2

- All principles for PAL
- $\blacktriangleright \ \Box \varphi \to [\psi] \varphi$
- ► From $\varphi \to [\chi][p]\psi$ infer $\varphi \to [\chi]\Box\psi$, where *p* does not occur in φ, ψ or χ

Some Logical Properties

$1. \vdash \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi)$	(K)
2. $\vdash \Box \varphi \rightarrow \varphi$	(T)
3. $\vdash \Box \varphi \rightarrow \Box \Box \varphi$	(4)
4. $\vdash \Box \diamondsuit \varphi \rightarrow \diamondsuit \Box \varphi$	(MK)
5. $\vdash \Diamond \Box \varphi \rightarrow \Box \Diamond \varphi$	(CR – Confluence)
6. $\vdash \varphi$ implies $\vdash \Box \varphi$	(Necessitation)

Arbitrary Public Announcement Logic Other Properties

- Single-agent APAL is not more expressive than EL.
- Multi-agents APAL is more expressive than PAL (and thus, also EL).
- Model checking in APAL is decidable.
- Satisfiability checking in APAL is not decidable [van Ditmarsch and French, AiML 2008].

Syntax and Semantics

- Proposed by [Ågotnes et al., JAL 2010]
- Language:

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid [\varphi] \varphi \mid [G] \varphi$$

where G ranges over 2^N .

- Abbreviation: $\langle G \rangle \varphi \stackrel{\text{def}}{=} \neg [G] \neg \varphi$
- Intended meanings:
 - [G]φ: 'φ is true after all truthful public announcements made by group G'
 - ⟨G⟩φ: φ is true after some truthful public announcement made by group G'

Semantics

Interpretation:

$$M, w \models [G]\varphi$$

iff
for all set $\{\psi_i : i \in G\} \subseteq \mathcal{L}_{EL}, M, w \models [\bigwedge_{i \in G} K_i \psi_i]\varphi$

- $[K_i\psi_i]$: 'agent *i* publicly and truthfully announces ψ_i '.
- Important detail: "the other agents remain silent!"
- The logic can model questions like:
 - 'can group G makes group H knows that φ ?'
 - etc.

Axiomatization

- All principles for PAL
- $[G]\varphi \rightarrow [\bigwedge_{i \in G} K_i \psi_i]\varphi$, where $\psi_i \in \mathcal{L}_{EL}$
- ► From $\varphi \to [\chi][\land_{i \in G} K_i p_i] \psi$ infer $\varphi \to [\chi][G] \psi$, where p_i does not occur in φ, ψ or χ

Some Logical Properties

1. $\vdash [\emptyset]\varphi \leftrightarrow \langle \emptyset \rangle \varphi \leftrightarrow \varphi$ (\emptyset is powerless) 2. $\vdash [G]\varphi \rightarrow \varphi$ (T) 3. $\vdash [G \cup H]\varphi \rightarrow [G][H]\varphi$ (4) 4. $\vdash \langle G \rangle [H]\varphi \rightarrow [H] \langle G \rangle \varphi$ (CR) 5. $\vdash K_i[i]\varphi \leftrightarrow [i]K_i\varphi$ (agent perfect recall and no-miracles) 6. $\vdash K_i[G]\varphi \rightarrow [G]K_i\varphi$ (group perfect recall) 7. $\vdash \langle i \rangle K_i p \leftrightarrow \langle j \rangle K_i p$

Other Properties

- ► Single-agent GAL is not more expressive than EL.
- Multi-agents GAL is more expressive than EL (and thus, also PAL).
- GAL is not at least as expressive as APAL.
- Model Checking in GAL is PSPACE-complete.

Vocabulary and Notation

- Proposed by [de Lima, CLIMA 2011].
- We assume:
 - a countable set $P = \{p, q, ...\}$ of propositional variables;
 - a finite set $N = \{i, j, ...\}$ of labels denoting agents;
 - a countable set $A_i = \{\epsilon\} \cup \{a, b, ...\}$ of labels denoting the actions available for each agent $i \in N$.
 - where ϵ denotes the *no-operation action* (or skip).
- A *joint action* α is a set of pairs $\{(i, a) : i \in N \text{ and } a \in A_i\}$
- Let G ⊆ N. A partial joint action α_G is the joint action α with its domain restricted to G, i.e., α_G = {(i, a) : i ∈ G and a ∈ A_i}
- ► A_G denotes the set of all partial joint actions available for group G.
- (Note that $\alpha_N = \alpha$ and also that $\alpha_0 = \emptyset$.)

• Language $\mathcal{L}_{[]}$:

$$\varphi ::= \top | p | \neg \varphi | \varphi \land \varphi | \mathbf{K}_i \varphi | \llbracket \alpha_G \rrbracket \varphi$$

where *p* ranges over *P*, *i* ranges over *N*, α ranges over *A*_{*N*} and *G* ranges over 2^{*N*}.

$$\langle \langle \alpha_G \rangle \rangle \varphi \stackrel{\text{def}}{=} \neg \llbracket \alpha_G \rrbracket \neg \varphi$$

Alternating-time Temporal Announcement Logic Intended Meanings

- α_G = {(i₁, a₁), ..., (i_{|G|}, a_{|G|})}:
 'all the agents in {i₁, ..., i_{|G|}} execute their corresponding actions in {a₁, ..., a_{|G|}} simultaneously (and we do not consider what the other agents are doing at the same time)'.
- [[α_G]]φ:
 [[[α_G]]]φ:
 [[α_G]]φ:
 [[α_G]]φ:

'after every possible occurrence of α_G , φ is true'.

• $\langle\!\langle \alpha_G \rangle\!\rangle \varphi$:

'there is an occurrence of α_G after which φ is true'.

Action Descriptions

- We assume an action description D(a) for each a ∈ A_i and each i ∈ N.
- $D(a) = \langle pre(a), pos(a) \rangle$, where:
 - pre(a) ∈ L_{EL} is the executability precondition of a (i.e., a is executable if and only if pre(a) is true.)
 - pos(a): P → L_{EL} is a partial function denoting the postconditions of a
 (i.e., n is true after the execution of a if and only if

(i.e., *p* is true after the execution of *a* if and only if pos(a)(p) is true before the execution of *a*.)

• For the action ϵ , we stipulate:

 $pre(\epsilon) = \top$ $pos(\epsilon) = \emptyset$

• The public announcement of φ :

 $pre(a) = \varphi$ $pos(a) = \emptyset$

• The public assignment $p := \varphi, q := \psi$

 $pre(a) = \top$ $pos(a)(p) = \varphi$ $pos(a)(q) = \psi$

Precondition of (Partial) Joint Actions

- Let $\alpha_G = \{(i_1, a_1), \dots, (i_{|G|}, a_{|G|})\}.$
- The precondition of α_G is:

$$\operatorname{pre}(\alpha_G) = \operatorname{pre}(a_1) \wedge \cdots \wedge \operatorname{pre}(a_{|G|})$$

In words, joint action α_G is executable if an only if each individual action a_n is executable.

Postconditions of (Partial) Joint Actions

- Let $\alpha_G = \{(i_1, a_1), \dots, (i_{|G|}, a_{|G|})\}.$
- The postconditions of α_G are:

$$pos(\alpha_G)(p) = (pos(a_1) \land \dots \land pos(a_{|G|})) \lor (p \land (pos(a_1) \lor \dots \lor pos(a_{|G|})))$$

- In words, the truth value of p after the execution of α_G will:
 - be true if every $pos(a_n)(p)$ is true ;
 - ▶ be false if every pos(*a_n*)(*p*) is false;
 - remain the same otherwise.

Alternating-time Temporal Announcement Logic Epistemic Models and Updates

• The *update* of *M* by action α_N is the triple $M | \alpha_N = \langle W | \alpha_N, R | \alpha_N, V | \alpha_N \rangle$, where:

$$W|\alpha_N = \{w : M, w \models \operatorname{pre}(\alpha_N)\}$$
$$R|\alpha_N(i) = R(i) \cap (W|\alpha_N \times W|\alpha_N)$$
$$V|\alpha_N(p) = \{w : M, w \models \operatorname{pos}(\alpha_N)(p)\} \cap W|\alpha_N$$

 $\begin{array}{ll} M,w \models \top \\ M,w \models p & \text{iff } w \in V(p) \\ M,w \models \neg \varphi & \text{iff } M,w \not\models \varphi \\ M,w \models \varphi \land \psi & \text{iff } M,w \models \varphi \text{ and } M,w \models \psi \\ M,w \models K_i\varphi & \text{iff for all } v \in W, \text{ if } (w,v) \in R(i) \text{ then } M,v \models \varphi \end{array}$

 $M, w \models \llbracket \alpha_G \rrbracket \varphi \quad \text{iff} \quad \text{for all } \beta_{N \setminus G} \in A_{N \setminus G}, \\ \text{if } M, w \models \text{pre}(\alpha_G \cup \beta_{N \setminus G}) \\ \text{then } M | (\alpha_G \cup \beta_{N \setminus G}), w \models \varphi$

Alternating-time Temporal Announcement Logic Embedding PAL

- To simulate the public announcement of φ we take some α_G such that:
 - $\operatorname{pre}(\alpha_G) \leftrightarrow \varphi$
 - ▶ $pos(\alpha_G)(p) \leftrightarrow p$, for all $p \in P$
- ► Then, the announcement of φ is simulated by $\alpha_G \cup \epsilon_{N\setminus G}$, because:

$$M, w \models \llbracket \alpha_G \cup \epsilon_{N \setminus G} \rrbracket \psi \quad \text{iff} \quad \text{for all } \beta \in A_N \\ \text{if } M, w \models \operatorname{pre}(\alpha_G \cup \epsilon_{N \setminus G} \cup \beta_{N \setminus N}) \\ \text{then } M | (\alpha_N \cup \epsilon_{N \setminus G} \cup \beta_{N \setminus N}), w \models \psi \\ \text{iff} \quad \text{if } M, w \models \operatorname{pre}(\alpha_G) \text{ then } M | \alpha_G, w \models \varphi \\ \text{iff} \quad M, w \models [\alpha_G] \psi$$

(because $\operatorname{pre}(\epsilon_{N\setminus G}) \leftrightarrow \top$ and $\beta_{\emptyset} = \emptyset$)

Alternating-time Temporal Announcement Logic Embedding APAL

The Arbitrary announcement (and assignment) operator is definable:

$M, w \models \llbracket \alpha_{\emptyset} \rrbracket \psi$	iff	for all $\beta \in A_N$, if $M, w \models \operatorname{pre}(\alpha_{\emptyset} \cup \beta_N)$ then $M (\alpha_{\emptyset} \cup \beta_N), w \models \psi$
	iff	for all $\beta \in A_N$, if $M, w \models \text{pre}(\beta_N)$ then $M \beta_N, w \models \psi$
	iff	for all $\beta \in A_N, M, w \models [\beta_N] \psi$
	iff	$M, w \models \Box \psi$

(because $\alpha_{\emptyset} = \emptyset$)

Alternating-time Temporal Announcement Logic Embedding GAL

The group announcement (and assignment) operator is definable:

$M,w \models \llbracket \epsilon_{N \setminus G} \rrbracket \psi$	iff	for all $\beta \in A_N$, if $M, w \models \operatorname{pre}(\epsilon_{N \setminus G} \cup \beta_G)$ then $M (\epsilon_{N \setminus G} \cup \beta_G), w \models \psi$
	iff	for all $\beta \in A_N$, if $M, w \models \operatorname{pre}(\beta_G)$ then $M \beta_G, w \models \psi$
	iff	for all $\beta \in A_N, M, w \models [\beta_G] \psi$
	iff	$M,w \models [G]\psi$

(because pre($\epsilon_{N \setminus G}$) $\leftrightarrow \top$)

Alternating-time Temporal Announcement Logic Example: Light bulb and light switch

- ► Irene and Jane live in a strange house: its interior is illuminated by a light bulb, but the switch is located outside the house. Irene is inside the house and Jane is outside it, close to the switch. They want to achieve a state satisfying K_ip ∧ K_jp.
- Let $N = \{i, j\}$:

$$D(tog) = \langle \top, \{(p \mapsto \neg p)\} \rangle$$
$$D(on) = \langle p, \emptyset \rangle$$
$$D(off) = \langle \neg p, \emptyset \rangle$$

• Let $A_i = \{\epsilon, on, off\}, A_j = \{\epsilon, tog\}.$

Example: Light bulb and light switch (cont.)

Let some actions be:

$$\begin{aligned} \alpha_{\{i,j\}} &= \{(i,on),(j,\epsilon)\} & \beta_{\{i,j\}} &= \{(i,\epsilon),(j,tog)\} \\ \alpha'_{\{i,j\}} &= \{(i,off),(j,\epsilon)\} & \beta'_{\{i,j\}} &= \{(i,\epsilon),(j,\epsilon)\} \end{aligned}$$

• We have, for all (M, w):

$$M, w \models p \to \llbracket \alpha_{\{i,j\}} \rrbracket \llbracket \beta'_{\{i,j\}} \rrbracket (\mathbf{K}_i p \land \mathbf{K}_j p)$$

$$M, w \models p \to \langle\!\langle \epsilon_j \rangle\!\rangle \langle\!\langle \epsilon_i \rangle\!\rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$$

$$M, w \models \neg p \to \llbracket \alpha'_{\{i,j\}} \rrbracket \llbracket \beta_{\{i,j\}} \rrbracket (\mathbf{K}_i p \land \mathbf{K}_j p)$$

$$M, w \models \neg p \to \langle\!\langle \epsilon_j \rangle\!\rangle \langle\!\langle \epsilon_i \rangle\!\rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$$

$$M, w \models \langle\!\langle \epsilon_j \rangle\!\rangle \langle\!\langle \epsilon_i \rangle\!\rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$$

All principles for multi-agents EL plus:

- (AA) $\llbracket \alpha_N \rrbracket p \leftrightarrow (\operatorname{pre}(\alpha_N) \to \operatorname{pos}(\alpha_N)(p))$
- (AN) $\llbracket \alpha_N \rrbracket \neg \varphi \leftrightarrow (\operatorname{pre}(\alpha_N) \to \neg \llbracket \alpha_G \rrbracket \varphi)$
- $(\mathsf{AC}) \quad \llbracket \alpha_N \rrbracket (\varphi \land \psi) \leftrightarrow (\llbracket \alpha_N \rrbracket \varphi \land \llbracket \alpha_N \rrbracket \psi)$
- (AK) $\llbracket \alpha_N \rrbracket K_i \varphi \leftrightarrow (\operatorname{pre}(\alpha_N) \to K_i \llbracket \alpha_N \rrbracket \varphi)$
- $(\mathsf{AS}) \quad (\llbracket \alpha_G \rrbracket \varphi \land \llbracket \beta_H \rrbracket \psi) \to \llbracket \alpha_G \cup \beta_H \rrbracket (\varphi \land \psi) \quad (G \cap H = \emptyset)$
- (RA) From $\eta(\llbracket \alpha_G \cup \beta_H \rrbracket \varphi)$, for all $\beta \in A_N$, infer $\eta(\llbracket \alpha_G \rrbracket \varphi)$

where η is a necessity form.

Some Interesting Properties

1. If
$$\vdash \varphi$$
 then $\vdash \llbracket \alpha_G \rrbracket \varphi$ (necessitation)
2. $\vdash \llbracket \alpha_G \rrbracket \varphi \rightarrow \llbracket \alpha_G \cup \beta_H \rrbracket \varphi$ (outcome monotonicity)
3. $\vdash \llbracket \alpha_G \rrbracket (\varphi \land \psi) \leftrightarrow (\llbracket \alpha_G \rrbracket \varphi \land \llbracket \alpha_G \rrbracket \psi)$ (act. and conjunction)
4. $\vdash K_i \llbracket \alpha_G \rrbracket \varphi \rightarrow \llbracket \alpha_G \rrbracket K_i \varphi$ (perfect recall)

Proof of item 4.

1. for all $\beta \in A_N$, $\vdash (\llbracket \alpha_G \rrbracket \varphi \land \llbracket \beta_{N \setminus G} \rrbracket \top) \rightarrow \llbracket \alpha_G \cup \beta_{N \setminus G} \rrbracket (\varphi \land \top)$ (AS)

2. for all
$$\beta \in A_N$$
, $\vdash \mathbf{K}_i \llbracket \alpha_G \rrbracket \varphi \to \mathbf{K}_i \llbracket \alpha_G \cup \beta_{N \setminus G} \rrbracket \varphi$ (1 + EL)

3. for all
$$\beta \in A_N$$
, $\vdash K_i[\![\alpha_G]\!]\varphi \rightarrow [\![\alpha_G \cup \beta_{N \setminus G}]\!]K_i\varphi$ (2 + AK)
4. $\vdash K_i[\![\alpha_G]\!]\varphi \rightarrow [\![\alpha_G]\!]K_i\varphi$ (3 + RA)

- In general, validity checking is not decidable. It follows immediately from the non-decidability of APAL (French and van Ditmarsch, AiML'08).
- ► However, if A_i is finite, then so is A_N. Then, rule RA can be replaced by the axiom:

(RA')
$$\bigwedge_{\beta \in A_N} \llbracket \alpha_G \cup \beta_{N \setminus G} \rrbracket \varphi \to \llbracket \alpha_G \rrbracket \varphi$$

• Together with outcome monotonicity we have:

$$\vdash \llbracket \alpha_G \rrbracket \varphi \leftrightarrow \bigwedge_{\beta \in A_N} \llbracket \alpha_G \cup \beta_{N \setminus G} \rrbracket \varphi$$

and, therefore, it can be reduced to epistemic logic.

Coalition Operator

• The language \mathcal{L}_X is defined by the BNF:

 $\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid \llbracket \alpha_G \rrbracket \varphi \mid \langle \langle G \rangle \rangle \varphi$

- $\llbracket G \rrbracket \varphi \stackrel{\text{def}}{=} \neg \langle \! \langle G \rangle \! \rangle \neg \varphi$
- Intended meanings:
 - $\langle\!\langle G \rangle\!\rangle \varphi$:

'group G is able to enforce that φ is true in the next step'

[[G]]φ:

'group G is not able to avoid that φ is true in the next step'

Interpretation:

 $M, w \models \langle\!\!\langle G \rangle\!\!\rangle \varphi$

iff

there is $\alpha \in A_N$ such that $M, w \models \neg \llbracket \alpha_G \rrbracket \bot$ and $M, w \models \llbracket \alpha_G \rrbracket \varphi$

Alternating-time Temporal Announcement Logic Axiomatization and (Un)decidability

- All the principles seen before plus:
 - (AG) $(\langle\!\langle \alpha_G \rangle\!\rangle \top \land \llbracket \alpha_G \rrbracket\!] \varphi) \to \langle\!\langle G \rangle\!\rangle \varphi$ (RG) From $\eta(\llbracket \alpha_G \rrbracket\! \bot \land \langle\!\langle \alpha_G \rangle\!\rangle \varphi)$, for all $\alpha \in A_N$, infer $\eta(\llbracket G \rrbracket\!] \varphi)$
- In general, validity checking is not decidable.
- But, if A_i is finite for all $i \in N$, then:

$$(\mathsf{RG'}) \qquad \qquad \bigwedge_{\alpha \in A_N} (\llbracket \alpha_G \rrbracket \bot \land \langle\!\!\langle \alpha_G \rangle\!\!\rangle \varphi) \to \llbracket G \rrbracket \varphi$$

and, in this case, it can be reduced to epistemic logic.

Alternating-time Temporal Announcement Logic Some Interesting Properties

1. $\vdash \langle\!\langle G \rangle\!\rangle \top$ (group activity)2. $\vdash \neg \langle\!\langle G \rangle\!\rangle \bot$ (group non-blocking)3. $\vdash \neg \langle\!\langle 0 \rangle\!\rangle \neg \varphi \rightarrow \langle\!\langle N \rangle\!\rangle \varphi$ (joint determinism)4. $\vdash (\langle\!\langle G \rangle\!\rangle \varphi \land \langle\!\langle H \rangle\!\rangle \psi) \rightarrow \langle\!\langle G \cup H \rangle\!\rangle (\varphi \land \psi)$ (group superadd.)5. If $\vdash \varphi \rightarrow \psi$ then $\vdash \langle\!\langle G \rangle\!\rangle \varphi \rightarrow \langle\!\langle G \rangle\!\psi$ (monotonicity)

(Note that these are the axioms of Coalition Logic.)

Example: Light bulb and light switch (cont.)

• We have, for all (M, w):

 $M, w \models p \rightarrow \llbracket \alpha_{\{i\}} \rrbracket \langle \{j\} \rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$ $M, w \models p \rightarrow \langle \{i\} \rangle \langle \{j\} \rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$ $M, w \models \neg p \rightarrow \llbracket \alpha'_{\{i\}} \rrbracket \langle \{j\} \rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$ $M, w \models \neg p \rightarrow \langle \{i\} \rangle \langle \{j\} \rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$ $M, w \models \langle \{i\} \rangle \langle \{j\} \rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$

Temporal Operators

• Language $\mathcal{L}_{\text{ATAL}}$:

 $\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid \llbracket \alpha_G \rrbracket \varphi \mid \langle \langle G \rangle \rangle \varphi \mid \langle \langle G \rangle \rangle^* \varphi \mid \langle \langle G, \varphi \rangle \rangle \varphi$

- Intended meanings:
 - ⟨⟨G⟩⟩^{*}φ:
 'group G is able to enforce that φ is true from now on'.
 - «G, ψ»φ:
 'group G is able to enforce that eventually φ will be true, while meanwhile enforcing that ψ is true'.
- Interpretation:

 $M, w \models \langle\!\langle G \rangle\!\rangle^* \varphi \quad \text{iff} \quad \text{for all } n \ge 0, M, w \models \langle\!\langle G \rangle\!\rangle^n \varphi$ $M, w \models \langle\!\langle G, \psi \rangle\!\rangle \varphi \quad \text{iff} \quad \text{there is } n \text{ such that } n \ge 0 \text{ and } M, w \models \langle\!\langle G \rangle\!\rangle^n \varphi$ $\text{and for all } m \text{ if } 0 < m \le n \text{ then } M, w \models \langle\!\langle G \rangle\!\rangle^m \psi$

where $\langle\!\langle G \rangle\!\rangle^0 \varphi \stackrel{\text{def}}{=} \varphi$ and $\langle\!\langle G \rangle\!\rangle^{n+1} \varphi \stackrel{\text{def}}{=} \langle\!\langle G \rangle\!\rangle \langle\!\langle G \rangle\!\rangle^n \varphi$.

Axiomatization and (Un)decidability

- Completeness has been achieved only for the case with a finite number of actions.
- Axiomatization: all the principles seen before plus:

$$\begin{array}{ll} (\text{FPA}) & \langle\!\langle G \rangle\!\rangle^* \varphi \to (\varphi \land \langle\!\langle G \rangle\!\rangle \langle\!\langle G \rangle\!\rangle^* \varphi) \\ (\text{FPU}) & \langle\!\langle G, \psi \rangle\!\rangle \varphi \to (\varphi \lor (\psi \land \langle\!\langle G \rangle\!\rangle \langle\!\langle G, \psi \rangle\!\rangle \varphi)) \\ (\text{RIA}) & \text{From } \chi \to (\varphi \land \langle\!\langle G \rangle\!\rangle \chi) \text{ infer } \chi \to \langle\!\langle G \rangle\!\rangle^* \varphi \\ (\text{RIU}) & \text{From } (\varphi \lor (\psi \land \langle\!\langle G \rangle\!\rangle \chi)) \to \chi \text{ infer } \langle\!\langle G, \psi \rangle\!\rangle \varphi \to \chi \end{array}$$

 For a finite number of actions, validity checking is also decidable.

Example: Light bulb and light switch (cont.)

• We have, for all (M, w):

 $M, w \models \langle\!\langle \{i\} \rangle\!\rangle \langle\!\langle \{j\} \rangle\!\rangle (\mathbf{K}_i p \land \mathbf{K}_j p)$ $M, w \models \langle\!\langle \{i, j\}, \top \rangle\!\rangle (\mathbf{K}_i p \land \mathbf{K}_i p)$ $M, w \models \langle\!\langle \{i, j\}, \top \rangle\!\rangle \langle\!\langle \{i, j\} \rangle\!\rangle^* (\mathbf{K}_i p \land \mathbf{K}_j p)$

Some Perspectives

- Model checking
- Computational complexity

ľ

- Complex actions (strategies, multi-agents planning)
- Preferences (Nash equilibrium, dominance, etc.)

$$\alpha_{i} \mathbf{B} \mathbf{R} \beta_{j} \stackrel{\text{def}}{=} \langle\!\!\langle \alpha_{i} \cup \beta_{j} \rangle\!\!\rangle \neg \varphi_{i} \to \llbracket\!\![\beta_{j}]\!\!] \neg \varphi_{i}$$
$$\mathsf{NE}(\alpha_{i}, \beta_{j}) \stackrel{\text{def}}{=} (\alpha_{i} \mathbf{B} \mathbf{R} \alpha_{j}) \land (\beta_{j} \mathbf{B} \mathbf{R} \alpha_{i})$$

- Group and common knowledge
- Private actions, suspicions (communication protocols): Alternating-time Temporal Dynamic Epistemic Logic

Thank you!