On the Almighty Wand

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA
Joint work with Rémi Brochenin and Etienne Lozes

Pointer programs

- Pointer: reference to a memory cell (non fixed memory address).
- Dynamic memory allocation/deallocation. (mutable data structures)
- Examples of instructions:
- $\mathrm{y} \rightarrow I:=\mathrm{x}$: write x to the l-field of the cell pointed to by y ,
- free x : deallocate the cell pointer to by x,
- $\mathrm{x}:=$ malloc($i)$: allocate i memory cells and assign its address to x .
- Specific properties for pointer programs:
- No null dereference.
- Memory leak: a memory cell can no longer be reached.
- Shape analysis: checking the structure of the heap.

Reasoning about pointer programs

- Examples of logical specification languages
- Separation logic
- Pointer assertion logic (PAL)
[Reynolds, LICS 02]
- TVLA [Lev-Ami \& Sagiv, SAS 00]: abstract interpretation technique with Kleene's logic (op. semantics in FOL + TC)
- Evolution Logic [Yahav et al., ESOP 03]: to specify temporal properties of programs with dynamically evolving heaps.

Reasoning about pointer programs

- Examples of logical specification languages
- Separation logic
- Pointer assertion logic (PAL)
- TVLA [Lev-Ami \& Sagiv, SAS 00]: abstract interpretation technique with Kleene's logic (op. semantics in FOL + TC)
- Evolution Logic [Yahav et al., ESOP 03]: to specify temporal properties of programs with dynamically evolving heaps.
- Model-checking
- Navigation Temporal Logic
[Distefano \& Katoen \& Rensink, FSTTCS 04]
- Regular model-checking [Bouajjani et al., TACAS 05]
- Translation into counter automata
[Bouajjani et al, CAV 06; Sangnier, PhD 08]

Memory states (I)

Memory states (I)

- Set of variables Var.
- Set of selectors/labels Lab.

- Set of values Val $=\mathbb{N} \uplus\{n i l\}$.
- Set of stores: $\mathcal{S} \stackrel{\text { def }}{=} \operatorname{Var} \rightarrow \operatorname{Val}$.
- Set of heaps:

$$
\mathcal{H} \stackrel{\text { def }}{=} \mathbb{N} \rightharpoonup_{f i n}\left(\mathrm{Lab} \rightharpoonup_{f i n+} \mathrm{Val}\right)
$$

Memory state (s, h)
In the sequel, we restrict ourselves to two selectors only or to one selector only.

Disjoint heaps

- h_{1} and h_{2} are disjoint whenever $\operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)=\emptyset$. Notation: $h_{1} \perp h_{2}$.
- Disjointness does not concern records.
- Disjoint union $h_{1} * h_{2}$ whenever $h_{1} \perp h_{2}$.

Disjoint heaps

- h_{1} and h_{2} are disjoint whenever $\operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)=\emptyset$. Notation: $h_{1} \perp h_{2}$.
- Disjointness does not concern records.
- Disjoint union $h_{1} * h_{2}$ whenever $h_{1} \perp h_{2}$.
- Disjoint heap graphs (with a unique selector and Val $=\mathbb{N}$):

$-$

Separation logic

- Introduced by Reynolds, Pym and O'Hearn.
- Reasoning about the heap with a strong form of locality built-in.
- $\mathcal{A} * \mathcal{B}$ is true whenever the heap can be divided into two disjoint parts, one satisfies \mathcal{A}, the other one \mathcal{B}. (second-order existential modality)
- $\mathcal{A} * \mathcal{B}$ is true whenever \mathcal{A} is true for a (fresh) disjoint heap, \mathcal{B} is true for the combined heap. (second-order universal modality)

Hoare triples

- Hoare triple: $\{\mathcal{A}\}$ PROG $\{\mathcal{B}\}$ (total correctness).
- Rule of constancy:

$$
\frac{\{\mathcal{A}\} \text { PROG }\{\mathcal{B}\}}{\left\{\mathcal{A} \wedge \mathcal{B}^{\prime}\right\} \operatorname{PROG}\left\{\mathcal{B} \wedge \mathcal{B}^{\prime}\right\}}
$$

where no variable free in \mathcal{B}^{\prime} is modified by PROG.

- Unsoundness of the rule of constancy in separation logic:

$$
\frac{\{(\exists \mathrm{z} \cdot \mathrm{x} \mapsto \mathrm{z})\}[\mathrm{x}]:=4\{\mathrm{x} \mapsto 4\}}{\{(\exists \mathrm{z} \cdot \mathrm{x} \mapsto \mathrm{z}) \wedge \mathrm{y} \mapsto 3\}[\mathrm{x}]:=4\{\mathrm{x} \mapsto 4 \wedge \mathrm{y} \mapsto 3\}}
$$

(when $\mathrm{x}=\mathrm{y}$)
$\mathrm{x} \mapsto \mathrm{z}$: "memory has a unique memory cell $\mathrm{x} \mapsto \mathrm{z}$ "

When separation logic enters into the play

- Reparation with frame rule:

$$
\frac{\{\mathcal{A}\} \text { PROG }\{\mathcal{B}\}}{\left\{\mathcal{A} * \mathcal{B}^{\prime}\right\} \operatorname{PROG}\left\{\mathcal{B} * \mathcal{B}^{\prime}\right\}}
$$

where no variable free in \mathcal{B}^{\prime} is modified by PROG.

- Strengthening precedent (SP)

$$
\frac{\mathcal{A} \Rightarrow \mathcal{B}^{\prime} \quad\left\{\mathcal{B}^{\prime}\right\} \text { PROG }\{\mathcal{B}\}}{\{\mathcal{A}\} \operatorname{PROG}\{\mathcal{B}\}}
$$

- Checking validity/satisfiability in separation logic is a building block of the verification process.

Standard inference rules for mutation

- Local form (MUL)

$$
\overline{\{(\exists \mathrm{z} . \mathrm{x} \mapsto \mathrm{z})\}[\mathrm{x}]:=\mathrm{y}\{\mathrm{x} \mapsto \mathrm{y}\}}
$$

- Global form (MUG)

$$
\overline{\{(\exists \mathrm{z} \cdot \mathrm{x} \mapsto \mathrm{z}) * \mathcal{A}\}[\mathrm{x}]:=\mathrm{y}\{\mathrm{x} \mapsto \mathrm{y} * \mathcal{A}\}}
$$

- Backward-reasoning form (MUBR)

$$
\overline{\{(\exists \mathrm{z} \cdot \mathrm{x} \mapsto \mathrm{z}) *((\mathrm{x} \mapsto \mathrm{y})-* \mathcal{A})\}[\mathrm{x}]:=\mathrm{y}\{\mathcal{A}\}}
$$

Memory states (II)

- Set of variables $\operatorname{Var}=\{\mathbf{x}, \mathrm{y}, \mathrm{z}, \ldots\}$.
- Set of locations Loc $=\left\{I, I^{\prime}, \ldots\right\}$.
- Set of values Val $=\mathbb{N} \uplus \operatorname{Loc} \uplus\{n i l\}$.

Memory states (II)

- Set of variables $\operatorname{Var}=\{\mathbf{x}, \mathrm{y}, \mathrm{z}, \ldots\}$.
- Set of locations Loc $=\left\{I, I^{\prime}, \ldots\right\}$.
- Set of values Val $=\mathbb{N} \uplus \operatorname{Loc} \uplus\{n i l\}$.
- Memory state:
- Store $s: \operatorname{Var} \rightarrow$ Val.
- Heap $h:$ Loc \rightharpoonup Val \times Val with finite domain.
- Simplification: $\mathrm{Loc}=\mathrm{Val}=\mathbb{N}$.

Memory states (II)

- Set of variables $\operatorname{Var}=\{\mathbf{x}, \mathrm{y}, \mathrm{z}, \ldots\}$.
- Set of locations Loc $=\left\{I, I^{\prime}, \ldots\right\}$.
- Set of values Val $=\mathbb{N} \uplus \operatorname{Loc} \uplus\{n i l\}$.
- Memory state:
- Store $s:$ Var \rightarrow Val.
- Heap $h:$ Loc \rightharpoonup Val \times Val with finite domain.
- Simplification: $\mathrm{Loc}=\mathrm{Val}=\mathbb{N}$.
- Disjoint heaps: $\operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)=\emptyset\left(\right.$ noted $\left.h_{1} \perp h_{2}\right)$.
- When $h_{1} \perp h_{2}, h_{1} * h_{2} \stackrel{\text { def }}{=} h_{1} \uplus h_{2}$.

Separation logic with two record fields

- Formulae:

$$
\mathcal{A}:=\neg \mathcal{A}|\mathcal{A} \wedge \mathcal{A}| \exists \mathrm{x} \mathcal{A}|\overbrace{\mathrm{x} \hookrightarrow \mathrm{y}, \mathrm{z} \mid \mathrm{x}=\mathrm{y}}^{\text {atomic formulae }}| \mathcal{A} * \mathcal{A} \mid \mathcal{A} * \mathcal{A}
$$

- Satisfaction relation:

$$
\left.\left.\begin{array}{rll}
(s, h) \models \neg \mathcal{A} & \text { iff } & \text { not }(s, h) \models \mathcal{A} \\
(s, h) \models \mathcal{A} \wedge \mathcal{B} & \text { iff } & (s, h) \models \mathcal{A} \text { and }(s, h) \models \mathcal{B} \\
(s, h) \models \exists \mathrm{x} \mathcal{A} & \text { iff } & \text { there is } I \in \operatorname{Loc} \mathrm{~s} . \mathrm{t} .(s[\mathrm{x} \mapsto I], h) \models \mathcal{A} \\
(s, h) \models \mathrm{x} \hookrightarrow \mathrm{y}, \mathrm{z} & \text { iff } & h(s(\mathrm{x}))=(s(\mathrm{y}), s(\mathrm{z}))
\end{array}\right] \begin{array}{lll}
(s, h) \models \mathrm{x}=\mathrm{y} & \text { iff } & s(\mathrm{x})=s(\mathrm{y})
\end{array}\right] \begin{array}{lll}
(s, h) \models \mathcal{A}_{1} * \mathcal{A}_{2} & \text { iff } & \text { there are two heaps } h_{1}, h_{2} \text { such that } \\
& h=h_{1} * h_{2},\left(s, h_{1}\right) \models \mathcal{A}_{1} \&\left(s, h_{2}\right) \models \mathcal{A}_{2}, \\
(s, h) \models \mathcal{A}_{1} * \mathcal{A}_{2} & \text { iff } \quad & \text { for all heaps } h^{\prime} \perp h, \\
& \text { if }\left(s, h^{\prime}\right) \models \mathcal{A}_{1} \text { then }\left(s, h^{\prime} * h\right) \models \mathcal{A}_{2} .
\end{array}
$$

Relationship between $*$ and $* *$

- $-*$ is the adjunct of $*$:

$$
(\mathcal{A} * \mathcal{B}) \Rightarrow \mathcal{C} \text { is valid iff } \mathcal{A} \Rightarrow(\mathcal{B} * \mathcal{C}) \text { is valid. }
$$

Relationship between $*$ and $* *$

- $*$ is the adjunct of $*$:

$$
(\mathcal{A} * \mathcal{B}) \Rightarrow \mathcal{C} \text { is valid iff } \mathcal{A} \Rightarrow(\mathcal{B} * \mathcal{C}) \text { is valid. }
$$

- ... but the formula below is not valid

$$
((\mathcal{A} * \mathcal{B}) \Rightarrow \mathcal{C}) \Leftrightarrow(\mathcal{A} \Rightarrow(\mathcal{B} * \mathcal{C}))
$$

Relationship between $*$ and $* *$

- $*$ is the adjunct of $*$:

$$
(\mathcal{A} * \mathcal{B}) \Rightarrow \mathcal{C} \text { is valid iff } \mathcal{A} \Rightarrow(\mathcal{B} * \mathcal{C}) \text { is valid. }
$$

- ... but the formula below is not valid

$$
((\mathcal{A} * \mathcal{B}) \Rightarrow \mathcal{C}) \Leftrightarrow(\mathcal{A} \Rightarrow(\mathcal{B} * \mathcal{C}))
$$

- Septraction - : existential version of $*$.

$$
\mathcal{A} \dashv \mathcal{B} \stackrel{\text { def }}{=} \neg(\mathcal{A}-* \neg \mathcal{B})
$$

$(s, h) \models \mathcal{A} \neq \mathcal{B}$ iff there is $h^{\prime} \perp h$ such that $\left(s, h^{\prime}\right) \models \mathcal{A}$ and $\left(s, h^{\prime} * h\right) \models \mathcal{B}$.

Undecidability
 [Calcagno \& Yang \& O'Hearn, APLAS 01]

- Reduction from finitary satisfiability for classical predicate logic restricted to a single binary predicate symbol, see e.g. [Trakhtenbrot, 50].
- $D(\mathrm{x}) \stackrel{\text { def }}{=} \mathrm{x} \hookrightarrow \mathbf{n i l}$, nil.
- Translation

$$
\exists \mathrm{x}, \text { nil } D(\mathrm{x}) \wedge(\neg \exists \mathrm{y}, \mathrm{z} \text { nil } \hookrightarrow \mathrm{y}, \mathrm{z}) \wedge t(\mathcal{A})
$$

- t is homomorphic for Boolean connectives.
- $t(\mathrm{R}(\mathrm{x}, \mathrm{y}))=D(\mathrm{x}) \wedge D(\mathrm{y}) \wedge \exists \mathrm{z} \mathrm{z} \hookrightarrow \mathrm{x}, \mathrm{y}$.
- $t(\exists \mathrm{x} \mathcal{B}) \stackrel{\text { def }}{=} \exists \mathrm{x} D(\mathrm{x}) \wedge t(\mathcal{B})$.

Undecidability
 [Calcagno \& Yang \& O'Hearn, APLAS 01]

- Reduction from finitary satisfiability for classical predicate logic restricted to a single binary predicate symbol, see e.g. [Trakhtenbrot, 50].
- $D(\mathrm{x}) \stackrel{\text { def }}{=} \mathrm{x} \hookrightarrow \mathbf{n i l}$, nil.
- Translation

$$
\exists \mathrm{x}, \text { nil } D(\mathrm{x}) \wedge(\neg \exists \mathrm{y}, \mathrm{z} \text { nil } \hookrightarrow \mathrm{y}, \mathrm{z}) \wedge t(\mathcal{A})
$$

- t is homomorphic for Boolean connectives.
- $t(\mathrm{R}(\mathrm{x}, \mathrm{y}))=D(\mathrm{x}) \wedge D(\mathrm{y}) \wedge \exists \mathrm{zz} \hookrightarrow \mathrm{x}, \mathrm{y}$.
- $t(\exists \mathrm{x} \mathcal{B}) \stackrel{\text { def }}{=} \exists \mathrm{x} D(\mathrm{x}) \wedge t(\mathcal{B})$.

What is the decidability status with a unique selector?

Complexity of propositional fragments [Calcagno \& Yang \& O'Hearn, APLAS 01]

- Model-checking and satisfiability for propositional separation logic is PSPACE-complete.
- See complexity of other fragments in [Reynolds, LICS 02].

Separation logic with one field

Memory states (one field)

- Memory state:
- Store $s: \operatorname{Var} \rightarrow \mathbb{N}$.
- Heap $h: \mathbb{N} \rightharpoonup \mathbb{N}$ with finite domain. Graph of a unary function with finite domain.

At most one value in a location.

Values are only locations.

Memory states (one field)

- Memory state:
- Store $s: \operatorname{Var} \rightarrow \mathbb{N}$.
- Heap $h: \mathbb{N} \rightharpoonup \mathbb{N}$ with finite domain. Graph of a unary function with finite domain.

At most one value in a location.

Values are only locations.

- Number of predecessors $\tilde{\sharp} l$: cardinal of $\left\{I^{\prime}: h\left(I^{\prime}\right)=I\right\}$. $\sharp 10 \geq 2$.

Syntax and semantics (bis)

$$
\mathcal{A}:=\neg \mathcal{A}|\mathcal{A} \wedge \mathcal{A}| \exists \mathrm{x} \cdot \mathcal{A}|\overbrace{\mathrm{x} \hookrightarrow \mathrm{y} \mid \mathrm{x}=\mathrm{y}}^{\text {atomic formulae }}| \mathcal{A} * \mathcal{A} \mid \mathcal{A} * \mathcal{A}
$$

- Satisfaction relation:

$$
\begin{array}{ll}
(s, h) \models \neg \mathcal{A} & \text { iff } \\
(s, h) \models \mathcal{A} \wedge \mathcal{B} & \text { iff }(s, h) \models \mathcal{A} \\
(s, h) \models \mathcal{A} \text { and }(s, h) \models \mathcal{B} \\
(s, h) \models \exists \mathrm{x} \cdot \mathcal{A} & \text { iff } \\
(s, h) \models \mathrm{x} \hookrightarrow \mathrm{y} & \text { is } / \in \operatorname{Loc} \text { s.t. }(s[\mathrm{x} \mapsto I], h) \models \mathcal{A} \\
(s, h) \models \mathrm{x}=\mathrm{y} & \text { iff } \\
(s(\mathrm{x}))=s(\mathrm{x})=s(\mathrm{y})
\end{array}
$$

$(s, h) \models \mathcal{A}_{1} * \mathcal{A}_{2} \quad$ iff there are two heaps h_{1}, h_{2} such that $h=h_{1} * h_{2},\left(s, h_{1}\right) \models \mathcal{A}_{1}$ and $\left(s, h_{2}\right) \models \mathcal{A}_{2}$
$(s, h) \models \mathcal{A}_{1} * \mathcal{A}_{2} \quad$ iff for all heaps $h^{\prime} \perp h$, if $\left(s, h^{\prime}\right) \models \mathcal{A}_{1}$ then $\left(s, h^{\prime} * h\right) \models \mathcal{A}_{2}$.

A selection of properties in SL

- The value of x is in the domain of the heap: alloc (x) $\stackrel{\text { def }}{=} \exists \mathrm{y} \mathrm{x} \hookrightarrow \mathrm{y}$.
- The heap has a unique cell $\mathrm{x} \mapsto \mathrm{y}$:

$$
\mathrm{x} \mapsto \mathrm{y} \xlongequal{\text { def }} \mathrm{x} \hookrightarrow \mathrm{y} \wedge \neg \exists \mathrm{zz} \neq \mathrm{x} \wedge \text { alloc }(\mathrm{z})
$$

- The domain of the heap is empty: emp $\stackrel{\text { def }}{=} \neg \exists \mathrm{x}$. alloc (x)
- x has at least n predecessors (two options):

$$
\begin{aligned}
& \exists \mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \cdot \bigwedge_{i \neq j} \mathrm{x}_{i} \neq \mathrm{x}_{j} \wedge \bigwedge_{i=1}^{n} \mathrm{x}_{i} \hookrightarrow \mathrm{x} \\
& \overbrace{(\exists \mathrm{y} \cdot \mathrm{y} \hookrightarrow \mathrm{x}) * \cdots *(\exists \mathrm{y} \cdot \mathrm{y} \hookrightarrow \mathrm{x})}^{n \text { times }} * \top
\end{aligned}
$$

27

Properties about lists in SL(*)

- The properties below can be expressed in $\mathrm{SL}(*)$:
- (s, h) contains only a list between x and y : Is (x, y).
- There is a list between x and $\mathrm{y}: \mathrm{x} \rightarrow{ }^{*} \mathrm{y}$.
- List properties and other recursive properties can be easily expressed in second-order logics.

Weak second-order logic so (or how to speak differently about memory states)

- Family $\left(\mathrm{VAR}^{i}\right)_{i \geq 1}$ of second-order variables interpreted as finite relations.
- Environment \mathcal{E} : valuation for variables in $\left(\operatorname{VAR}^{i}\right)_{i \geq 1}$.
- Satisfaction relation:

$$
\begin{aligned}
& (s, h), \mathcal{E} \models \exists \mathrm{P} \mathcal{A} \quad \text { iff } \quad \text { there is a finite subset } \mathcal{R} \text { of } \text { Loc }^{n}, \\
& \text { such that }(s, h), \mathcal{E}[\mathrm{P} \mapsto \mathcal{R}] \models \mathcal{A} \\
& (s, h), \mathcal{E} \models \mathrm{P}\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{n}\right) \\
& \text { iff } \quad\left(s\left(\mathrm{x}_{1}\right), \ldots, s\left(\mathrm{x}_{n}\right)\right) \in \mathcal{E}(\mathrm{P})
\end{aligned}
$$

- Fragments: MSO (only VAR ${ }^{1}$) \& DSO (only VAR ${ }^{2}$)
- $\mathrm{L} \sqsubseteq \mathrm{L}^{\prime}$ whenever for every $\mathcal{A} \in \mathrm{L}$, there is $\mathcal{A}^{\prime} \in \mathrm{L}^{\prime}$ that holds true in the same memory states.

SL \sqsubseteq DSO (internalization of SL semantics)

- Abbreviations:
- heap $(\mathrm{P}) \stackrel{\text { def }}{=} \forall \mathrm{x}, \mathrm{y}, \mathrm{z} . \mathrm{xPy} \wedge \mathrm{xPz} \Rightarrow \mathrm{y}=\mathrm{z}$,
- $\mathrm{P}=\mathrm{Q} * \mathrm{R} \stackrel{\text { def }}{=} \forall \mathrm{x}, \mathrm{y} .(\mathrm{xPy} \Leftrightarrow(\mathrm{xQy} \vee \mathrm{xRy})) \wedge \neg(\mathrm{xQy} \wedge \mathrm{xRy})$.
- Translation $\exists \mathrm{P} .(\forall \mathrm{x}, \mathrm{y} \cdot \mathrm{xPy} \Leftrightarrow \mathrm{x} \hookrightarrow \mathrm{y}) \wedge \mathrm{t}_{\mathrm{P}}(\mathcal{A})$:

$$
\begin{aligned}
t_{\mathrm{P}}(\mathrm{x} \hookrightarrow \mathrm{y}) \stackrel{\text { def }}{=} & \mathrm{xPy} \\
t_{\mathrm{P}}(\mathcal{B} * \mathcal{C}) \stackrel{\text { def }}{=} & \exists \mathrm{Q}, \mathrm{Q}^{\prime} \cdot \mathrm{P}=\mathrm{Q} * \mathrm{Q}^{\prime} \wedge t_{\mathrm{Q}}(\mathcal{B}) \wedge t_{\mathrm{Q}^{\prime}}(\mathcal{C}) \\
t_{\mathrm{P}}(\mathcal{B} * \mathcal{C}) \stackrel{\text { def }}{=} & \forall \mathrm{Q} \cdot\left(\left(\exists \mathrm{Q}^{\prime} . \operatorname{heap}\left(\mathrm{Q}^{\prime}\right) \wedge \mathrm{Q}^{\prime}=\mathrm{Q} * \mathrm{P}\right) \wedge \operatorname{heap}(\mathrm{Q}) \wedge t_{\mathrm{Q}}(\mathcal{B})\right. \\
& \Rightarrow\left(\exists \mathrm{Q}^{\prime} . \operatorname{heap}\left(\mathrm{Q}^{\prime}\right) \wedge \mathrm{Q}^{\prime}=\mathrm{Q} * \mathrm{P} \wedge t_{\mathrm{Q}^{\prime}}(\mathcal{C})\right)
\end{aligned}
$$

Complexity of SL $(*)$

$S L(*)$ is decidable

- Weak monadic 2nd order theory of $(D, f,=)$ where
- D is a countable set,
- f is a unary function,
- = is equality,
is decidable.
[Rabin, Trans. of AMS 69]
- MSO can be translated into this theory.
- $\mathrm{SL}(*) \sqsubseteq \mathrm{MSO}$.

$\mathrm{SL}(*)$ is not elementary recursive (lists as finite words)

- FO3 over finite words is not elementary recursive. [Stockmeyer, PhD 74]
- Encoding a word by a list: position i has letter a_{j} iff the $(i+1)$ th location has j predecessors.
- Word formula $\mathcal{B}_{\text {word }}$:

$$
\left(\mathrm{x}_{\text {beg }} \rightarrow^{+} \mathrm{x}_{e n d}\right) \wedge\left(\forall \mathrm{x}\left(\mathrm{x}_{\text {beg }} \rightarrow^{+} \mathrm{x}\right) \wedge\left(\mathrm{x} \rightarrow^{+} \mathrm{x}_{\text {end }}\right) \Rightarrow \sharp \mathrm{x} \leq|\Sigma|\right)
$$

- Translation of $\mathcal{A}: \mathcal{B}_{\text {word }} \wedge t(\mathcal{A})$
- $t(\mathrm{x}<\mathrm{y}) \stackrel{\text { def }}{=}\left(\mathrm{x} \rightarrow^{+} \mathrm{y}\right)$,
- $t(\forall \mathrm{x} \mathcal{B}) \stackrel{\text { def }}{=} \forall \mathrm{x} .\left(\mathrm{x}_{\text {beg }} \rightarrow^{+} \mathrm{x}\right) \wedge\left(\mathrm{x} \rightarrow^{+} \mathrm{x}_{\text {end }}\right) \Rightarrow t(\mathcal{B})$,
- $t\left(\mathrm{P}_{\mathrm{a}_{i}}(\mathrm{x})\right) \stackrel{\text { def }}{=} \sharp \mathrm{x}=i$
(shortcut for a formula in $\mathrm{SL}(*)$ of size $\mathcal{O}(i)$)

$\mathrm{SL}(*)$ is not the ultimate decidable fragment!

- MSO is strictly more expressive than $\mathrm{SL}(*)$ (and decidable).
[Antonopoulos \& Dawar, FOSSACS'09]

$\mathrm{SL}(*)$ is not the ultimate decidable fragment!

- MSO is strictly more expressive than $\mathrm{SL}(*)$ (and decidable). [Antonopoulos \& Dawar, FOSSACS'09]
- Satisfiability for $\operatorname{SL}\left(*+母^{n}\right)$ is also decidable. $(s, h) \models \mathcal{A}_{1} 乛^{n} \mathcal{A}_{2}$ iff there is $h^{\prime} \perp h$ such that $\left|\operatorname{dom}\left(h^{\prime}\right)\right| \leq n,\left(s, h^{\prime}\right) \models \mathcal{A}_{1}$ and $\left(s, h * h^{\prime}\right) \models \mathcal{A}_{2}$.

$\mathrm{SL}(*)$ is not the ultimate decidable fragment!

- MSO is strictly more expressive than $\mathrm{SL}(*)$ (and decidable).
[Antonopoulos \& Dawar, FOSSACS'09]
- Satisfiability for $\operatorname{SL}\left(*+\star^{n}\right)$ is also decidable. $(s, h) \models \mathcal{A}_{1} 乛^{n} \mathcal{A}_{2}$ iff there is $h^{\prime} \perp h$ such that $\left|\operatorname{dom}\left(h^{\prime}\right)\right| \leq n,\left(s, h^{\prime}\right) \models \mathcal{A}_{1}$ and $\left(s, h * h^{\prime}\right) \models \mathcal{A}_{2}$.
- Fragment L:

$$
\mathcal{A}::=\perp|\mathrm{x} \mapsto \mathrm{y}| \text { size } \leq k \mid \text { size }=k|\mathcal{A} * \mathcal{A}| \mathcal{A} \vee \mathcal{A} \mid \mathcal{A} \wedge \mathcal{A}
$$

- Pushing the decidability border further! Satisfiability for SL restricted to formulae such that the left argument of any $*$-formula belongs to L is decidable.

$\mathrm{SL}(* *)$ is equivalent to SO
 [Brochenin \& Demri \& Lozes, CSL’08]

Proof schema for the equivalence

- $\mathrm{SL}(*) \sqsubseteq \mathrm{SL} \sqsubseteq \mathrm{DSO} \& \mathrm{SO} \sqsubseteq \mathrm{DSO}$
- DSO $\sqsubseteq \mathrm{SL}(-*)$.

Encoding finite set of pairs by specialized patterns in memory.

- All translations are in logarithmic space.

Key ingredient: comparing numbers of predecessors

- $\sharp \mathrm{x}+c \bowtie \sharp \tilde{y}+c^{\prime}$ can be expressed in $\mathrm{SL}(-*)$:
- $\bowtie \in\{<,>, \leq, \geq,=\}$ and $c, c^{\prime} \in \mathbb{N}$,
- by a formula of quadratic size in $\left(c+c^{\prime}\right)$.

Key ingredient: comparing numbers of predecessors

- $\tilde{\# x}+c \bowtie \tilde{\# y}+c^{\prime}$ can be expressed in $\operatorname{SL}(-*)$:
- $\bowtie \in\{<,>, \leq, \geq,=\}$ and $c, c^{\prime} \in \mathbb{N}$,
- by a formula of quadratic size in $\left(c+c^{\prime}\right)$.
- For instance, $\tilde{\sharp x}+c \leq \tilde{y y}+c^{\prime}$ is equivalent to:

$$
\forall n \tilde{\sharp y}-c \leq n \text { implies } \tilde{\sharp x}-c^{\prime} \leq n .
$$

(1) $\tilde{\sharp y}-c \leq n$ is encoded by adding extra arrows in a controlled way.
(2) The cardinal of the domain of the extra heap is precisely n.

Key ingredient: comparing numbers of predecessors

- $\tilde{\# x}+c \bowtie \tilde{\# y}+c^{\prime}$ can be expressed in $\operatorname{SL}(-*)$:
- $\bowtie \in\{<,>, \leq, \geq,=\}$ and $c, c^{\prime} \in \mathbb{N}$,
- by a formula of quadratic size in $\left(c+c^{\prime}\right)$.
- For instance, $\tilde{\sharp x}+c \leq \tilde{\# y}+c^{\prime}$ is equivalent to:

$$
\forall n \tilde{\sharp Y}-c \leq n \text { implies } \tilde{\sharp x}-c^{\prime} \leq n .
$$

(1) $\tilde{\sharp y}-c \leq n$ is encoded by adding extra arrows in a controlled way.
(2) The cardinal of the domain of the extra heap is precisely n.

- Finite runs of Minsky machines can be encoded as memory states.
... but establishing DSO $\sqsubseteq \mathrm{SL}(-*)$ is stronger than showing undecidability.

Elementary bits: the markers

- A marker is a specific pattern in the memory heap.
- A marker of degree n and endpoint l.

- The location I_{0} is an extremity in the marker (extr(z)).

A discipline on quantifications

- Quantification over P_{i} can only occur in the scope of quantifications over $\mathrm{P}_{1}, \ldots, \mathrm{P}_{i-1}$.
- Quantifier depth of \mathcal{B} in \mathcal{A} : maximal i such that this occurrence of \mathcal{B} is in the scope of $\exists \mathrm{P}_{i}$.
- Translation map of the form $t_{i}(\mathcal{B})$ depending of the quantifier depth i.

Principle to encode an environment

- A pair $\left(I, I^{\prime}\right) \in \mathcal{E}\left(\mathrm{P}_{i}\right)$ is encoded by markers of consecutive degree N and $N+1$.

- The markers are introduced with septraction operator \rightarrow.

How to identify the original heap h

- No location has more than k predecessors in h where $s\left(\mathrm{z}_{0}^{m}\right)$ is the endpoint of some new k-marker.
- Spectrum: sequence of degrees of new markers
$\stackrel{n}{\bullet}$: There is a unique extremity $/$ with $\tilde{\sharp I}=n$
(in the environment part)
- A discipline for adding new markers

Translating $P_{j}(\mathrm{x}, \mathrm{y})$ - Summary

- $\left(I, I^{\prime}\right) \in \mathcal{E}\left(\mathrm{P}_{i}\right)$ iff there are markers with respective endpoint I and I^{\prime} whose degrees are consecutive values strictly between $\widetilde{\sharp \mathrm{z}_{i}^{m}}$ and $\widetilde{\sharp \mathrm{z}_{i}^{M}}$.
- z_{i}^{m} and z_{i}^{M} are interpreted as locations outside the original memory heap.
- $\# \mathrm{z}_{i}^{m}$ is strictly greater than the degree of any location in the original memory heap.
- Translation $t_{i}\left(\mathrm{P}_{j}(\mathrm{x}, \mathrm{y})\right)$:

$$
\begin{gathered}
\exists z, z^{\prime}(z \hookrightarrow x) \wedge\left(z^{\prime} \hookrightarrow y\right) \wedge\left(\sharp z>\sharp z_{j}^{m}\right) \wedge\left(\sharp z^{\prime}<\sharp z_{j}^{M}\right) \wedge\left(\sharp z^{\prime}=1+\sharp z\right) \wedge \\
\operatorname{extr}(z) \wedge \operatorname{extr}\left(z^{\prime}\right)
\end{gathered}
$$

Translation

- Translation of $\exists \mathrm{p}_{i} \mathcal{B}$ at the $(i-1)$ quantification depth:

$$
\begin{gathered}
\exists \mathbf{z}_{i}^{m}, \mathrm{z}_{i}^{M} \operatorname{isol}\left(\mathrm{z}_{i}^{m}\right) \wedge \operatorname{isol}\left(\mathrm{z}_{i}^{M}\right) \wedge \\
\left(\mathrm{z}_{i}^{m} \bullet \bullet \bullet \ldots \stackrel{z}{i}_{\bullet}^{\bullet} \nrightarrow\left(\stackrel{z}{0}_{\mathrm{z}_{0}^{m}}^{\bullet} \circ \bullet \ldots \circ_{i}^{z_{i}^{M}} \wedge t_{i}(\mathcal{B})\right)\right)
\end{gathered}
$$

isol (x) is an abbreviation for $\neg \exists y .(x \hookrightarrow y) \vee(y \hookrightarrow x)$.

- t_{i} is the identity for $\mathrm{x}=\mathrm{y}$ and $\mathrm{x} \hookrightarrow \mathrm{y}$.
- $t_{i}(\exists \mathrm{x} \mathcal{B})$ is defined as $\exists \mathrm{x}$ notonenv $(\mathrm{x}) \wedge t_{i}(\mathcal{B})$ where notonenv(x) guarantees that x is not interpreted as a location used to encode environments.

Conclusion

Summary

This is mainly about SL with one selector !

- SL is as expressive as SO .
- Satisfiability/validity problem for SL is undecidable.
- $\mathrm{SL}(*) \equiv \mathrm{SL}: *$ is redundant in SL.
- $\mathrm{SL}(*)$ is decidable with non-elementary complexity.

Summary

This is mainly about SL with one selector !

- SL is as expressive as SO .
- Satisfiability/validity problem for SL is undecidable.
- $\mathrm{SL}(-*) \equiv \mathrm{SL}: *$ is redundant in SL.
- $\mathrm{SL}(*)$ is decidable with non-elementary complexity.
$\mathrm{SL}(-*) \equiv \mathrm{SL} \equiv \mathrm{SO}$ also holds with more than one selector. (auxiliary memory cells are even easier to identify)

A selection of open problems for DynRes

- Is SL restricted to one variable decidable? (see Task 2.3 "Decidable fragments")
- Can we extend further $\operatorname{SL}(*)$ with a weak $*$? (see Task 2.3 "Decidable fragments")
- Is SL2 as expressive as So?
(see Task 2 "Separation and update: from Expressivity to Decidability")
- What is the decidability status of $\mathrm{SL}(-*) \cap \mathrm{SL} 2$? (see Task 2.3 "Decidable fragments")

A selection of open problems for DynRes (II)

- Tableaux calculus for SL restricted to one variable, if decidable?
(see Task 3 "Proof Systems for Separation and Update Logics")
- Automata-based decision procedures for known decidable fragments of SL?
(see Task 3.1 "Structures, calculi and automata")

