
On the Almighty Wand

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA

Joint work with Rémi Brochenin and Etienne Lozes

Pointer programs

• Pointer: reference to a memory cell
(non fixed memory address).

• Dynamic memory allocation/deallocation.
(mutable data structures)

• Examples of instructions:
• y → l := x: write x to the l-field of the cell pointed to by y,
• free x: deallocate the cell pointer to by x ,
• x := malloc(i): allocate i memory cells and assign its
address to x.

• Specific properties for pointer programs:
• No null dereference.
• Memory leak: a memory cell can no longer be reached.
• Shape analysis: checking the structure of the heap.

2

Reasoning about pointer programs

• Examples of logical specification languages
• Separation logic [Reynolds, LICS 02]
• Pointer assertion logic (PAL) [Jensen et al. 97]
• TVLA [Lev-Ami & Sagiv, SAS 00]: abstract interpretation
technique with Kleene’s logic (op. semantics in FOL + TC)

• Evolution Logic [Yahav et al., ESOP 03]: to specify temporal
properties of programs with dynamically evolving heaps.

3

Reasoning about pointer programs

• Examples of logical specification languages
• Separation logic [Reynolds, LICS 02]
• Pointer assertion logic (PAL) [Jensen et al. 97]
• TVLA [Lev-Ami & Sagiv, SAS 00]: abstract interpretation
technique with Kleene’s logic (op. semantics in FOL + TC)

• Evolution Logic [Yahav et al., ESOP 03]: to specify temporal
properties of programs with dynamically evolving heaps.

• Model-checking
• Navigation Temporal Logic

[Distefano & Katoen & Rensink, FSTTCS 04]
• Regular model-checking [Bouajjani et al., TACAS 05]
• Translation into counter automata

[Bouajjani et al, CAV 06; Sangnier, PhD 08]

4

Memory states (I)

5

Memory states (I)

• Set of variables Var.
• Set of selectors/labels Lab.
• Set of values Val = N " {nil}.

• Set of stores: S def
= Var→ Val.

• Set of heaps:
H

def
= N ⇀fin (Lab ⇀fin+ Val).

Memory state (s,h)

In the sequel, we restrict ourselves to two selectors only or to
one selector only.

6

Disjoint heaps

• h1 and h2 are disjoint whenever dom(h1) ∩ dom(h2) = ∅.
Notation: h1 ⊥ h2.

• Disjointness does not concern records.

• Disjoint union h1 ∗ h2 whenever h1 ⊥ h2.

7

Disjoint heaps

• h1 and h2 are disjoint whenever dom(h1) ∩ dom(h2) = ∅.
Notation: h1 ⊥ h2.

• Disjointness does not concern records.

• Disjoint union h1 ∗ h2 whenever h1 ⊥ h2.

• Disjoint heap graphs (with a unique selector and Val = N):

= ∗

8

Separation logic

• Introduced by Reynolds, Pym and O’Hearn.

• Reasoning about the heap with a strong form of locality
built-in.

• A ∗ B is true whenever the heap can be divided into two
disjoint parts, one satisfies A, the other one B.
(second-order existential modality)

• A−∗B is true whenever A is true for a (fresh) disjoint heap,
B is true for the combined heap.
(second-order universal modality)

9

Hoare triples
• Hoare triple: {A} PROG {B} (total correctness).

• Rule of constancy:

{A} PROG {B}

{A ∧ B′} PROG {B ∧ B′}

where no variable free in B′ is modified by PROG.

• Unsoundness of the rule of constancy in separation logic:

{(∃z. x *→ z)} [x] := 4 {x *→ 4}
{(∃z. x *→ z) ∧ y *→ 3} [x] := 4 {x *→ 4 ∧ y *→ 3}

(when x = y)
x *→ z: “memory has a unique memory cell x *→ z”

10

When separation logic enters into the play

• Reparation with frame rule:

{A} PROG {B}

{A ∗ B′} PROG {B ∗ B′}

where no variable free in B′ is modified by PROG.

• Strengthening precedent (SP)

A ⇒ B′ {B′} PROG {B}

{A} PROG {B}

• Checking validity/satisfiability in separation logic is a
building block of the verification process.

11

Standard inference rules for mutation

• Local form (MUL)

{(∃z. x *→ z)} [x] := y {x *→ y}

• Global form (MUG)

{(∃z. x *→ z) ∗A} [x] := y {x *→ y ∗A}

• Backward-reasoning form (MUBR)

{(∃z. x *→ z) ∗ ((x *→ y)−∗ A)} [x] := y {A}

12

Memory states (II)
• Set of variables Var = {x,y,z, . . .}.

• Set of locations Loc = {l , l ′, . . .}.

• Set of values Val = N " Loc " {nil}.

13

Memory states (II)
• Set of variables Var = {x,y,z, . . .}.

• Set of locations Loc = {l , l ′, . . .}.

• Set of values Val = N " Loc " {nil}.

• Memory state:
• Store s : Var → Val.
• Heap h : Loc ⇀ Val× Val with finite domain.

• Simplification: Loc = Val = N.

14

Memory states (II)
• Set of variables Var = {x,y,z, . . .}.

• Set of locations Loc = {l , l ′, . . .}.

• Set of values Val = N " Loc " {nil}.

• Memory state:
• Store s : Var → Val.
• Heap h : Loc ⇀ Val× Val with finite domain.

• Simplification: Loc = Val = N.

• Disjoint heaps: dom(h1) ∩ dom(h2) = ∅ (noted h1 ⊥ h2).

• When h1 ⊥ h2, h1 ∗ h2
def
= h1 " h2.

15

Separation logic with two record fields

• Formulae:

A := ¬A | A ∧A | ∃x A |

atomic formulae︷ ︸︸ ︷
x ↪→ y,z | x = y | A ∗A | A−∗A

• Satisfaction relation:

(s,h) |= ¬A iff not (s,h) |= A
(s,h) |= A ∧ B iff (s,h) |= A and (s,h) |= B
(s,h) |= ∃x A iff there is l ∈ Loc s. t. (s[x *→ l],h) |= A

(s,h) |= x ↪→ y,z iff h(s(x)) = (s(y), s(z))
(s,h) |= x = y iff s(x) = s(y)

(s,h) |= A1 ∗A2 iff there are two heaps h1,h2 such that
h = h1 ∗ h2, (s,h1) |= A1 & (s,h2) |= A2,

(s,h) |= A1−∗A2 iff for all heaps h′⊥h,
if (s,h′) |= A1 then (s,h′ ∗ h) |= A2.

16

Relationship between ∗ and −∗

• −∗ is the adjunct of ∗:
(A ∗ B) ⇒ C is valid iff A ⇒ (B−∗C) is valid.

17

Relationship between ∗ and −∗

• −∗ is the adjunct of ∗:
(A ∗ B) ⇒ C is valid iff A ⇒ (B−∗C) is valid.

• . . . but the formula below is not valid

((A ∗ B) ⇒ C) ⇔ (A ⇒ (B−∗C))

18

Relationship between ∗ and −∗

• −∗ is the adjunct of ∗:
(A ∗ B) ⇒ C is valid iff A ⇒ (B−∗C) is valid.

• . . . but the formula below is not valid

((A ∗ B) ⇒ C) ⇔ (A ⇒ (B−∗C))

• Septraction −∗¬: existential version of −∗.

A −∗¬ B
def
= ¬(A−∗¬B)

(s,h) |= A−∗¬ B iff there is h′⊥h such that (s,h′) |= A and
(s,h′ ∗ h) |= B.

19

Undecidability
[Calcagno & Yang & O’Hearn, APLAS 01]
• Reduction from finitary satisfiability for classical predicate
logic restricted to a single binary predicate symbol, see
e.g. [Trakhtenbrot, 50].

• D(x)
def
= x ↪→ nil,nil.

• Translation
∃x,nil D(x) ∧ (¬∃y,z nil ↪→ y,z) ∧ t(A)

• t is homomorphic for Boolean connectives.

• t(R(x,y)) = D(x) ∧ D(y) ∧ ∃z z ↪→ x,y.

• t(∃x B)
def
= ∃x D(x) ∧ t(B).

20

Undecidability
[Calcagno & Yang & O’Hearn, APLAS 01]
• Reduction from finitary satisfiability for classical predicate
logic restricted to a single binary predicate symbol, see
e.g. [Trakhtenbrot, 50].

• D(x)
def
= x ↪→ nil,nil.

• Translation
∃x,nil D(x) ∧ (¬∃y,z nil ↪→ y,z) ∧ t(A)

• t is homomorphic for Boolean connectives.

• t(R(x,y)) = D(x) ∧ D(y) ∧ ∃z z ↪→ x,y.

• t(∃x B)
def
= ∃x D(x) ∧ t(B).

What is the decidability status with a unique selector?

21

Complexity of propositional fragments
[Calcagno & Yang & O’Hearn, APLAS 01]

• Model-checking and satisfiability for propositional
separation logic is PSPACE-complete.

• See complexity of other fragments in [Reynolds, LICS 02].

22

Separation logic with one field

23

Memory states (one field)
• Memory state:

• Store s : Var → N.
• Heap h : N ⇀ N with finite domain.
Graph of a unary function with finite domain.

At most one value in a location.

Values are only locations.

24

Memory states (one field)
• Memory state:

• Store s : Var → N.
• Heap h : N ⇀ N with finite domain.
Graph of a unary function with finite domain.

At most one value in a location.

Values are only locations.

• Number of predecessors #̃l : cardinal of {l ′ : h(l ′) = l}.
#̃10 ≥ 2.
25

Syntax and semantics (bis)

A := ¬A | A ∧A | ∃x.A |

atomic formulae︷ ︸︸ ︷
x ↪→ y | x = y | A ∗A | A−∗A

• Satisfaction relation:

(s,h) |= ¬A iff not (s,h) |= A
(s,h) |= A ∧ B iff (s,h) |= A and (s,h) |= B
(s,h) |= ∃x. A iff there is l ∈ Loc s.t. (s[x *→ l],h) |= A

(s,h) |= x ↪→ y iff h(s(x)) = s(y)
(s,h) |= x = y iff s(x) = s(y)

(s,h) |= A1 ∗A2 iff there are two heaps h1,h2 such that
h = h1 ∗ h2, (s,h1) |= A1 and (s,h2) |= A2

(s,h) |= A1−∗A2 iff for all heaps h′⊥h,
if (s,h′) |= A1 then (s,h′ ∗ h) |= A2.

26

A selection of properties in SL

• The value of x is in the domain of the heap:
alloc (x)

def
= ∃y x ↪→ y.

• The heap has a unique cell x *→ y:

x *→ y def
= x ↪→ y ∧ ¬∃z z 0= x ∧ alloc (z)

• The domain of the heap is empty: emp def
= ¬∃x.alloc (x)

• x has at least n predecessors (two options):

∃x1, . . . ,xn.
∧

i "=j
xi 0= xj ∧

n∧

i=1
xi ↪→ x

n times︷ ︸︸ ︷
(∃y. y ↪→ x) ∗ · · · ∗ (∃y. y ↪→ x) ∗1

27

Properties about lists in SL(∗)

• The properties below can be expressed in SL(∗):
• (s, h) contains only a list between x and y: ls(x,y).

• There is a list between x and y: x→∗ y.

• List properties and other recursive properties can be easily
expressed in second-order logics.

28

Weak second-order logic SO
(or how to speak differently about memory states)

• Family (VARi)i≥1 of second-order variables interpreted as
finite relations.

• Environment E : valuation for variables in (VARi)i≥1.

• Satisfaction relation:
(s,h), E |= ∃P A iff there is a finite subset R of Locn,

such that (s,h), E [P *→ R] |= A
(s,h), E |= P(x1, · · · ,xn)

iff (s(x1), . . . , s(xn)) ∈ E(P)

• Fragments: MSO (only VAR1) & DSO (only VAR2)

• L 2 L′ whenever for every A ∈ L, there is A′ ∈ L′ that
holds true in the same memory states.

29

SL 2 DSO (internalization of SL semantics)

• Abbreviations:
• heap(P)

def
= ∀x,y,z. xPy ∧ xPz⇒ y = z,

• P = Q ∗ R def
= ∀x,y. (xPy ⇔ (xQy ∨ xRy)) ∧ ¬(xQy ∧ xRy).

• Translation ∃P. (∀x,y. xPy⇔ x ↪→ y) ∧ tP(A):

tP(x ↪→ y)
def
= xPy

tP(B ∗ C)
def
= ∃Q,Q′. P = Q ∗ Q′ ∧ tQ(B) ∧ tQ′(C)

tP(B−∗C)
def
= ∀Q.((∃Q′. heap(Q′) ∧ Q′ = Q ∗ P) ∧ heap(Q)∧ tQ(B))

⇒ (∃Q′. heap(Q′) ∧ Q′ = Q ∗ P ∧ tQ′(C))

30

Complexity of SL(∗)

31

SL(∗) is decidable

• Weak monadic 2nd order theory of (D, f ,=) where
• D is a countable set,
• f is a unary function,
• = is equality,

is decidable. [Rabin, Trans. of AMS 69]

• MSO can be translated into this theory.

• SL(∗) 2 MSO.

32

SL(∗) is not elementary recursive
(lists as finite words)

• FO3 over finite words is not elementary recursive.
[Stockmeyer, PhD 74]

• Encoding a word by a list: position i has letter aj iff the
(i + 1)th location has j predecessors.

• Word formula Bword :

(xbeg →+ xend)∧(∀x (xbeg →+ x)∧(x →+ xend) ⇒ #x ≤ |Σ|)

• Translation of A: Bword ∧ t(A)

• t(x < y)
def
= (x →+ y),

• t(∀x B)
def
= ∀x. (xbeg →+ x) ∧ (x →+ xend) ⇒ t(B),

• t(Pai (x))
def
= #x = i

(shortcut for a formula in SL(∗) of size O(i))

33

SL(∗) is not the ultimate decidable fragment!

• MSO is strictly more expressive than SL(∗) (and decidable).
[Antonopoulos & Dawar, FOSSACS’09]

34

SL(∗) is not the ultimate decidable fragment!

• MSO is strictly more expressive than SL(∗) (and decidable).
[Antonopoulos & Dawar, FOSSACS’09]

• Satisfiability for SL(∗ + −∗¬ n) is also decidable.
(s,h) |= A1−∗¬ nA2 iff there is h′ ⊥ h such that
|dom(h′)| ≤ n, (s,h′) |= A1 and (s,h ∗ h′) |= A2.

35

SL(∗) is not the ultimate decidable fragment!

• MSO is strictly more expressive than SL(∗) (and decidable).
[Antonopoulos & Dawar, FOSSACS’09]

• Satisfiability for SL(∗ + −∗¬ n) is also decidable.
(s,h) |= A1−∗¬ nA2 iff there is h′ ⊥ h such that
|dom(h′)| ≤ n, (s,h′) |= A1 and (s,h ∗ h′) |= A2.

• Fragment L:

A ::=⊥ | x *→ y | size ≤ k | size = k | A∗A | A∨A | A∧A

• Pushing the decidability border further!
Satisfiability for SL restricted to formulae such that the left
argument of any −∗-formula belongs to L is decidable.

36

SL(−∗) is equivalent to SO
[Brochenin & Demri & Lozes, CSL’08]

37

Proof schema for the equivalence

• SL(−∗) 2 SL 2 DSO & SO 2 DSO.

• DSO 2 SL(−∗).
Encoding finite set of pairs by specialized patterns in
memory.

• All translations are in logarithmic space.

38

Key ingredient:
comparing numbers of predecessors

• #̃x+ c !" #̃y + c′ can be expressed in SL(−∗):
• !"∈ {<, >,≤,≥, =} and c, c′ ∈ N,
• by a formula of quadratic size in (c + c′).

39

Key ingredient:
comparing numbers of predecessors

• #̃x+ c !" #̃y + c′ can be expressed in SL(−∗):
• !"∈ {<, >,≤,≥, =} and c, c′ ∈ N,
• by a formula of quadratic size in (c + c′).

• For instance, #̃x+ c ≤ #̃y+ c′ is equivalent to:
∀n #̃y− c ≤ n implies #̃x− c′ ≤ n.

1 #̃y− c ≤ n is encoded by adding extra arrows in a
controlled way.

2 The cardinal of the domain of the extra heap is precisely n.

40

Key ingredient:
comparing numbers of predecessors

• #̃x+ c !" #̃y + c′ can be expressed in SL(−∗):
• !"∈ {<, >,≤,≥, =} and c, c′ ∈ N,
• by a formula of quadratic size in (c + c′).

• For instance, #̃x+ c ≤ #̃y+ c′ is equivalent to:
∀n #̃y− c ≤ n implies #̃x− c′ ≤ n.

1 #̃y− c ≤ n is encoded by adding extra arrows in a
controlled way.

2 The cardinal of the domain of the extra heap is precisely n.

• Finite runs of Minsky machines can be encoded as
memory states.
. . . but establishing DSO 2 SL(−∗) is stronger than showing
undecidability.

41

Elementary bits: the markers

• A marker is a specific pattern in the memory heap.

• A marker of degree n and endpoint l .

l

l0

l1 ln. . .

with #̃l1 = . . . = #̃ln = 0

• The location l0 is an extremity in the marker (extr(z)).

42

A discipline on quantifications

• Quantification over Pi can only occur in the scope of
quantifications over P1, . . . ,Pi−1.

• Quantifier depth of B in A: maximal i such that this
occurrence of B is in the scope of ∃ Pi .

• Translation map of the form ti(B) depending of the
quantifier depth i .

43

Principle to encode an environment

• A pair (l , l ′) ∈ E(Pi) is encoded by markers of consecutive
degree N and N + 1.

l

l0

l1 lN. . .

l ′

l ′0

l ′1 l ′N+1. . .

• The markers are introduced with septraction operator −∗¬.

44

How to identify the original heap h
• No location has more than k predecessors in h where
s(zm0) is the endpoint of some new k-marker.

• Spectrum: sequence of degrees of new markers

• ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦ •
n
•: There is a unique extremity l with #̃l = n
(in the environment part)

• A discipline for adding new markers

•
zm0 ◦ • • . . . ◦ •

zM0 :: •
zm1 ◦ • • . . . ◦ •

zM1
︸ ︷︷ ︸
encodes E(P1)

= •
zm0 ◦ • • . . . ◦ •

zM1

•
zm0 ◦ • • . . . ◦ •

zMi :: •
zmi+1

◦ • • . . . ◦ •
zMi+1

︸ ︷︷ ︸
encodes E(Pi+1)

= •
zm0 ◦ • • . . . ◦ •

zMi+1

45

Translating Pj(x,y) – Summary

• (l , l ′) ∈ E(Pi) iff there are markers with respective endpoint
l and l ′ whose degrees are consecutive values strictly
between #̃zmi and #̃zMi .

• zmi and zMi are interpreted as locations outside the original
memory heap.

• #̃zmi is strictly greater than the degree of any location in the
original memory heap.

• Translation ti(Pj(x,y)):

∃z,z′ (z ↪→ x) ∧ (z′ ↪→ y) ∧ (#z > #zmj) ∧ (#z′ < #zMj) ∧ (#z′ = 1+#z) ∧

extr(z) ∧ extr(z′)

46

Translation

• Translation of ∃Pi B at the (i − 1) quantification depth:

∃zmi ,zMi isol(zmi) ∧ isol(zMi)∧

(•
zmi ◦ • • . . . ◦ •

zMi −∗¬ (•
zm0 ◦ • • . . . ◦ •

zMi ∧ ti(B)))

isol(x) is an abbreviation for ¬∃y. (x ↪→ y) ∨ (y ↪→ x).

• ti is the identity for x = y and x ↪→ y.

• ti(∃x B) is defined as ∃x notonenv(x) ∧ ti(B) where
notonenv(x) guarantees that x is not interpreted as a
location used to encode environments.

47

Conclusion

48

Summary

This is mainly about SL with one selector !

• SL is as expressive as SO.

• Satisfiability/validity problem for SL is undecidable.

• SL(−∗) ≡ SL: ∗ is redundant in SL.

• SL(∗) is decidable with non-elementary complexity.

49

Summary

This is mainly about SL with one selector !

• SL is as expressive as SO.

• Satisfiability/validity problem for SL is undecidable.

• SL(−∗) ≡ SL: ∗ is redundant in SL.

• SL(∗) is decidable with non-elementary complexity.

SL(−∗) ≡ SL ≡ SO also holds with more than one selector.
(auxiliary memory cells are even easier to identify)

50

A selection of open problems for DynRes

• Is SL restricted to one variable decidable?
(see Task 2.3 “Decidable fragments”)

• Can we extend further SL(∗) with a weak −∗?
(see Task 2.3 “Decidable fragments”)

• Is SL2 as expressive as SO?
(see Task 2 “Separation and update: from Expressivity to
Decidability”)

• What is the decidability status of SL(−∗) ∩ SL2?
(see Task 2.3 “Decidable fragments”)

51

A selection of open problems for DynRes (II)

• Tableaux calculus for SL restricted to one variable, if
decidable?
(see Task 3 “Proof Systems for Separation and Update
Logics”)

• Automata-based decision procedures for known decidable
fragments of SL?
(see Task 3.1 “Structures, calculi and automata”)

52

	Introduction to SL
	Separation Logic in a nutshell
	Separation logic

	Two languages
	SL with 1 selector
	Weak second-order logic

	Complexity of SL()
	Decidability of SL()
	SL() is not elementary

	SL(-) is equivalent to SO
	Counting predecessors
	Markers
	Encoding sets of pairs

	Conclusion
	Summary
	Open problems

