
Separation and modality with updates∗

Joseph Boudou

Septembre 2015

1 Introduction

In this report, logics combining separation with dynamic modalities are pre-
sented. We focus on abstract logics where the separation is not dedicated to
specific structures like trees, graphs or pointers memories. Moreover, we only
consider propositional logics. Our main concerns for those logics are their ex-
pressivity and the decidability and complexity of their satisfiability problem.

In the next section, the logics BI and BBI are briefly recalled. This logics are
the bases of most logics with separation. Moreover, we show that, to a given
extend, BBI is already a modal logic with separation and update. In Section 3,
we present logics with separation and temporal modalities. Section 4 intro-
duces logics with separation and one modality for each action in some set of
actions. Section 5 is dedicated to logics with separation related to updates of
knowledge (or belief) bases. Finally the last section draws a conclusion.

2 Logics of Bunched Implications

The logic of Bunched Implications (BI) [26, 27] has been devised to reason
about resources. Like in linear logic, the symbols of BI’s language consists of a
set of additive symbols (the boolean constants > and ⊥, the conjunction ∧, the
disjunction ∨ and the implication→) and a set of multiplicatives symbols (the
constant I , the conjunction T and the implication −T). But in contradistinction
with linear logic, the additive fragment of BI corresponds exactly to the intu-
itionistic logic. BI’s multiplicative fragment is identical to the multiplicative
fragment of intuitionistic linear logic (MILL). Intuitively, whereas the additive
conjunction expresses sharing, the multiplicative conjunction expresses sepa-
ration: for a state w to satisfy the formula ϕ Tψ it must be possible to separate
(decompose) w into two substates x and y such that x satisfies ϕ and y satisfies
ψ. BI has an interesting sequent calculus with cut elimination [26, 27]. More-
over, its satisfiability problem is decidable: a sound, complete and terminating
tableaux method has been devised in [19].
∗Scientific report of the ANR project DynRes (project ANR-11-BS02-011).

1

In [12], a new semantics for BI based on Petri nets with inconsistency is pro-
posed. This semantics is proved to be equivalent with the usual semantics over
resources monoids. Moreover, assuming there is an injective function from the
places of the Petri net with inconsistencyP to the propositional variables of the
language, each configuration M of P can be encoded by a BI’s formula M̂ such
that for all configurations M1 and M2 of P, M2 can be reached from M1 if and
only if the empty configuration satisfies the formula M̂1 −T M̂2 in P. This re-
sult illustrates the fact that the multiplicative conjunction −T can express some
kinds of dynamic of resources.

The Boolean logic of Bunched Implications (BBI) [27, 18] is the classical vari-
ant of BI. The language of BBI is the same as BI’s one, but in BBI, the interpreta-
tion of the additive operators is classical instead of being intuitionistic. BBI is
generally considered as the logical kernel of separation logics [29, 16] (a fam-
ily of logics used in the industry to verify programs with pointers). Since BBI
is also the base logic of most of the logics presented in this report, we give a
brief formal description of its propositional variant. The language of BBI is
inductively defined by the following grammar:

ϕ,ψ := p | ⊥ | (ϕ ∧ψ) | (ϕ→ ψ) | I | (ϕ Tψ) | (ϕ −Tψ)

where p is a propositional variable. I is the neutral element of the multiplica-
tive conjunction T. The usual abbreviations are defined: ¬ϕ � ϕ→⊥, > � ¬⊥
and ϕ ∨ψ � (¬ϕ)→ ψ. BBI’s formulas are interpreted over non-deterministic
commutative monoids as defined below.

Definition. A non-deterministic commutative monoid is a tuple (M,◦, e) where
M is a set, ◦ is a function from M ×M to the powerset P (M) of M and e ∈M
such that:

∀r ∈M, e ◦ r = {r} (identity)

∀r, s ∈M, r ◦ s = s ◦ r (commutativity)

∀r, s, t ∈M, r ◦ (s ◦ t) = (r ◦ s) ◦ t (associativity1)

A partial commutative monoid is a non-deterministic commutative monoid which
further satisfies the following partiality property:

∀r, s, t,u ∈M, if {r, s} ⊆ t ◦u then r = s (partiality)

A model for BBI is a tuple (M,◦, e,V) where (M,◦, e) is a non-deterministic
commutative monoid and V is a valuation assigning a subset of M to each
propositional variable of the language. For any resource r ∈ M and any BBI’s
formula ϕ,M, r � ϕ denotes that r satisfies ϕ inM. The satisfiability relation

1For the associativity, the outermost ◦must be understood as the extension of ◦ to P (M) defined
by S ◦ T =

⋃
{s ◦ t | s ∈ S and t ∈ T } for all S,T ∈ P (M).

2

� is defined as usual for the additives (classical) symbols and as follows for the
multiplicative symbols:

M, r � I iff r = e

M, r � ϕ Tψ iff ∃s, t ∈M such that r ∈ s ◦ t,M, s � ϕ andM, t � ψ
M, r � ϕ −Tψ iff ∀s, t ∈M if t ∈ r ◦ s andM, s � ϕ thenM, t � ψ

A Hilbert-style axiomatization for BBI is given in [18]. Let us define the
operators ϕ i ψ � ¬((¬ϕ) T (¬ψ)) and ϕ —� ψ � ¬((¬ϕ) −T ψ). Using the ax-
iomatization from [18], it can be easily proved that the K axioms for i and
—� hold in BBI. Similarly, it can be easily proved that the necessitation rules
for i and —� are admissible. Since I is trivially a nullary normal modal-
ity, BBI can be seen as a normal multimodal logic. A Kripke model can be
easily constructed from a model in the previous semantics by defining the
ternary relation C� {(r, s, t) | r ∈ s ◦ t} to interpret T and the ternary relation
C̃ � {(s, t, r) | r ∈ s ◦ t} to interpret —�.

Moreover, since a formula of the form ϕ −Tψ intuitively means that ψ will
be satisfied after the addition of a resource satisfying ϕ, the multiplicative
implication −T can be seen as an update modality. Therefore, BBI is already
itself a modal logic with separation and update. Of course, updates in BBI are
limited to the addition of some resources. The modal logics presented in the
remaining sections weaken this restriction, allowing different updates to be
expressed.

The satisfiability problem for BBI is undecidable [25, 8]. From a modal logic
perspective, this can be seen from the fact that modal logics with an associative
binary modalities are usually undecidable, as shown in [23].

3 Separation and temporal modalities

In this section we present logics which combine separation with some unary
modalities meant to express the evolution of the system over time. We are only
interested here in abstract logics and we will not mention logics devised for
some particular structures like ambient logic [9].

The Dynamic logic of Bunched Implications (DBI) [14, 12] extends BI with
two dual unary modalities � and ^. DBI’s formulas are interpreted with re-
spect to a pair (r,w) where r is a resource from a resource monoid and w is a
state of an unlabeled transition system. It has to be noticed that the resource
monoid and the unlabeled transition system are independent. Moreover, the
evaluation of the constructors inherited from BI depends only on the resource r
whereas the evaluation of the unary modality depends only on the state w. The
only dependence between the resources and the states holds in the valuation
function, which assigns a subset of pairs of resources and states to each propo-
sitional variable. Therefore, in DBI only the characteristics of the resources
may change over time; the structure of the resources always stays the same:

3

if a given resource can be separated at some time, it will always remain sepa-
rable. We say that DBI can capture dynamic properties of resources. In [12], an
example on prices evolution illustrates that this kind of dynamic may be of
interest. A sound and complete tableaux method for DBI is given in [14, 12].

The Logic with Separating Modalities (LSM) [12] extends BBI with unary modal-
ities� and�• along with one unary modality�ρ for each ρ in a setΣ of resource
variables. A model for LSM is a tupleM = (W,M,◦, e,R,σ ,V) such that:

• W is a non-empty set of states;

• (M,◦, e) is a partial commutative monoid;

• R is a reflexive and transitive binary relation over W ×M;

• σ is a function from Σ to M;

• V is a valuation function assigning a subset of W ×M to each proposi-
tional variable of the language.

The satisfiability relation is defined with respect to a pair (w,r) ∈W ×M. For
the constructs inherited from BBI, the definition of the satisfiability relation is
similar to the one given in Sect. 2 and depends only on r. For the added unary
modalities the definition of the satisfiability relation is as follows:

M,w, r � �ϕ iff ∀(x,s) ∈W ×M,
if (w,r) R (x,s) thenM,x, s � ϕ

M,w, r � �•ϕ iff ∀(x,s) ∈W ×M,∀t,u ∈M,
if u ∈ r ◦ t and (w,u) R (x,s) thenM,x, s � ϕ

M,w, r � �ρϕ iff ∀(x,s) ∈W ×M,∀u ∈M,
if u ∈ r ◦ σ (ρ) and (w,u) R (x,s) thenM,x, s � ϕ

Since the accessibility relation R relates pairs fromW ×M, resources in LSM can
be produced and consumed over time, which were not the case with DBI. We
say that LSM can capture dynamic of resources. A sound and complete tableaux
method for LSM is provided in [12].

4 Separation and modalities for actions

In the previous section, we presented logics with modalities expressing the
evolution of a system after some anonymous actions or events. We present
now some modal logics with separation in which actions are named. In those
logics, it is possible to reason about the modifications of resources by some
specific actions.

4

The Modal logic of Bunched Implications (MBI) [28, 11] is a Hennessy-Milner-
style modal logic with separation. We give here a brief description of the
quantifier-free fragment MBIc of MBI [10], for comparison purpose. The lan-
guage of MBIc is the extension of BBI with two unary modalities [a] and [a]ν for
each action a ∈ A from a given monoid (A,‖,skip) of actions. A model for MBIc
is constructed by means of a process calculus called the synchronous calculus
of resource processes (SCRP) from a partial commutative monoid (M,◦, e) of
resources and a partial function µ :A×M −−⇀M describing the modifications
of the resources by the actions. For each action, the process calculus SCRP pro-
vides a binary relation

a−→⊆ (M × P)× (M × P) where P is the set of processes of
the calculus. Formulas of MBIc are evaluated on pairs composed of a process
and a resource. We give the interesting definitions of the satisfiability relation
for MBIc:

M, r,p � ϕ Tψ iff ∃s1, s2 ∈M,∃q1,q2 ∈ P such that

r ∈ s1 ◦ s2,p ∼ q1 × q2,M, r1, s1 � ϕ andM, r2, s2 � ψ
M, r,p � ϕ −Tψ iff ∀s, t ∈M,∀q ∈ P ,

if t ∈ r ◦ s andM, s,q � ϕ thenM, t,p × q � ψ
M, r,p � [a]ϕ iff ∀s ∈M,∀q ∈ P ,

if (r,p)
a−→ (s,q) thenM, s,q � ϕ

M, r,p � [a]νϕ iff ∀s, t,u ∈M,∀q ∈ P ,

if u ∈ r ◦ t and (u,p)
a−→ (s,q) thenM, s,q � ϕ

whereM = (M,◦, e,µ,V), ∼ is the bisimulation relation over processes and × is
a binary operator over processes. It has to be noted that ‖ and × are understood
as parallel composition of actions and processes respectively.

The Dynamic Modal logic of Bunched Implication (DMBI) [15, 12] extends
BBI with a modality �, like in DBI, along with a modality [a] for each action
a ∈ A from a monoid (A, ; ,skip). It has to be noted though that the composi-
tion ; of the monoid of actions does not denote parallel execution like in MBIc
but sequential composition. A model for DMBI is a tuple (W,M,◦, e,R,µ,V)
where W is a non-empty set of states, (M,◦, e) is partial commutative monoid
of resources, R is an accessibility function assigning a binary relation over W
to each action in A, µ is a resource modification partial function from A×M
to M and V is a valuation function assigning a subset of W ×M to each propo-
sitional variable. Moreover, a model must satisfy the following conditions, for
all w,x,y ∈W , all r ∈M and all a,b ∈ A: 2

• w R(skip) w

• if w R(a) x and x R(b) y then w R(a ; b) y

• µ(skip, r) ↓ and µ(skip, r) = r

2For any partial function f , we write f (x) ↓ to denote that f is defined at x.

5

• if µ(a, r) ↓ and µ(b,µ(a, r)) ↓ then µ(a ; b,r) ↓ and µ(a ; b,r) = µ(b,µ(a, r))

For each a ∈ A, the accessibility relation
a−→ over M ×W is defined such that

r,w
a−→ s,x iff µ(a, r) ↓, µ(a, r) = s and w R(a) x. The binary relation { over

M ×W is the transitive closure of
⋃
a∈A

a−→. The satisfiability relation is defined
as follows for the multiplicative operators and the unary modalities (the other
constructs being classical):

M, r,w � ϕ Tψ iff ∃s, t ∈M such that r ∈ s ◦ t,M, s,w � ϕ andM, t,w � ψ
M, r,w � ϕ −Tψ iff ∀s, t ∈M, if t ∈ r ◦ s andM, s,w � ϕ thenM, t,w � ψ

M, r,w � [a]ϕ iff ∀s ∈M,∀x ∈W, if (r,w)
a−→ (s,x) thenM, s,x � ϕ

M, r,w � �ϕ iff ∀s ∈M,∀x ∈W, if (r,w){ (s,x) thenM, s,x � ϕ

Compared with MBIc, DMBI is more abstract since the transition system is not
constrained by a process calculus. A more involved difference can be observed
by comparing the satisfiability of the multiplicative conjunction T of those log-
ics. Whereas in MBIc both resources and processes are decomposed by this
operator, in DMBI only resources are decomposed, states being left unchanged.
This difference explain why there is no need for multiplicative modalities [·]ν
in DMBI: they can be defined by [a]νϕ �>−T[a]ϕ. In fact, MBIc has been devised
to reason about synchronous actions which is not the case of DMBI. Neverthe-
less, it is possible to reason about synchronous actions in DMBI, by constructing
a model representing a set of parallel processes, as illustrated in [15, 12]. A
sound and complete tableaux calculus for DMBI with countermodel extraction
is proposed in [15, 12].

The Propositional Dynamic Logic with Parallel composition, Recovering
and Storing (PRSPDL) [6, 5, 2, 3, 7] is an extension of the Propositional Dy-
namic Logic (PDL) [17, 20] with parallel composition of programs and some
new special programs. There is no multiplicative conjunction in the language
of PRSPDL, but as we will see, the combination of parallel compositions and
tests allows to express separation. This logic does not add dynamics to a logic
with separation but adds separation to a dynamic logic. Like for PDL, the lan-
guage of PRSPDL is twofold. There are both programs and formulas, defined
by simultaneous induction as follows:

α,β := a | (α ∪ β) | (α ; β) | α∗ | ϕ? | r1 | r2 | s1 | s2 | (α ‖ β) (programs)

ϕ,ψ := p | ⊥ | (ϕ ∧ψ) | (ϕ→ ψ) | [α]ϕ (formulas)

where a is an atomic program and p a propositional variable. Informally, · ∪ ·
is the non-deterministic choice between two programs, · ; · is the sequential
composition, ·∗ is the iteration, ·? is the test, ri and si are the recovering and
storing programs and · ‖ · is the parallel composition. We define the usual
abbreviations: ¬ϕ � ϕ→⊥, > � ¬⊥, ϕ ∨ψ � (¬ϕ)→ ψ and 〈α〉ϕ � ¬ [α]¬ϕ.

A model for PRSPDL is a tupleM = (W,R,◦,V) where W is a non-empty set
of states, R is an accessibility function assigning a binary relation over W to

6

each atomic action, ◦ is a function from W ×W to P (W) and V is a valuation
function assigning a subset of W to each propositional variable. The satisfia-
bility relation � is defined by induction simultaneously with the extension of
R to all programs of the language. We only give here the definitions of R and
� which are important for the following discussion and refer the reader to [20]
for the missing ones.

w R(ϕ?) x iff w = x andM,w � ϕ
w R(ri) x iff ∃y1, y2 ∈W such that w ∈ y1 ◦ y2 and x = yi
w R(si) x iff ∃y1, y2 ∈W such that x ∈ y1 ◦ y2 and w = yi
w R(α ‖ β) x iff ∃y1, y2, z1, z2 ∈W such that

w ∈ y1 ◦ y2, y1 R(α) z1, y2 R(β) z2 and x ∈ z1 ◦ z2

M,w � [α]ϕ iff ∀x ∈W, if w R(α) x thenM,x � ϕ

It has to be noted that here the ◦ function does not necessarily has a neutral
element and is not constrained to be commutative or associative. Therefore
we do not have a non-deterministic commutative monoid. Nevertheless, we
can define an operator T by ϕ Tψ �

〈
ϕ? ‖ ψ?

〉
>. This operator has a semantics

similar to the semantics of BBI’s multiplicative conjunction:

M,w � ϕ Tψ iff ∃x,y ∈W such that w ∈ x ◦ y,M,x � ϕ andM, y � ψ

Hence, even though PRSPDL is not a resource logic since resources usually have
a non-deterministic commutative monoid structure, PRSPDL still is a logic with
separation, its parallel composition being separating.

PRSPDL differs from both MBIc and DMBI in the kind of currency which is
expressible. A first expression of concurrency can be captured by a formula
of the form 〈α〉ϕ T

〈
β
〉
ψ which informally means that the current state can

be divided in two substates, one from which the action α can be executed to
reach a substate satisfying ϕ and another substate from which the action β
can be executed to reach a substate satisfying ψ. This kind of concurrency is
the only one expressible in DMBI and is expressible in MBIc and PRSPDL too.
The drawbacks of such formula are that it does not ensure that the resulting
substates after the parallel execution of α and β can be substates of a global
final state and even if that global final state exists, the formula can not express
its properties. In PRSPDL, the formula

〈
(α ;ϕ?) ‖ (β ;ψ?)

〉
χ ensures that the

final global state exists and satisfies χ. In MBIc, another kind of concurrency
can be expressed by formulas of the form 〈a ‖ b〉ϕ. This formula informally
means that the actions a and b can be executed synchronously to reach a state
(or process) satisfying ϕ. A similar property can be expressed in PRSPDL by
the same formula 〈a ‖ b〉ϕ. But in PRSPDL atomic actions are not executed
synchronously and a program of the form (a ; b) ‖ a is executable in PRSPDL
whereas it is not expressible in MBIc.

Since the operator T is not associative in PRSPDL, PRSPDL’s satisfiability
problem is decidable and has been proved to be inside 2EXPTIME in [3]. By
removing the special programs r1, r2, s1, s2 and adding the partiality condition,

7

the satisfiability problem becomes easier and has been proved to be in NEXP-
TIME in [7]. A sound and complete tableaux method has been devised for
this variant in [3]. Finally by adding the following condition of separation, the
satisfiability problem has been proved to be undecidable in [5].

∀w,x1, y1,x2, y2 ∈W, if w ∈ x1 ◦ y1 and w ∈ x2 ◦ y2

then x1 = x2 and y1 = y2

(separation)

The iteration-free fragment of PRSPDL with the previous separation condition
has been axiomatized in [2].

5 Separation and epistemic updates

In this section, we present logics with separation designed for epistemic rea-
soning and update of knowledge or belief bases.

The Epistemic Separation Logic (ESL) [13, 12] extends BBI with one epistemic
unary modality Ka for each agent a from a set A of agents. Informally, the
formula Kaϕ means that the agent a knows that ϕ. A model for ESL is a tu-
pleM = (M,◦, e, (∼a)a∈A,V) where (M,◦, e) is a partial commutative monoid of
resources, (∼a)a∈A is a family of equivalence relations over M and V is a val-
uation function assigning a subset of M to each propositional variable of the
language. The satisfiability relation for the epistemic modalities is:

M, r � Kaϕ iff ∀s ∈M, if r ∼a s thenM, s � ϕ

Combining multiplicative operators with epistemic modalities leads to some
interesting formulas, as illustrated in [12]. For instance, the formula ϕ −TKaψ
intuitively means that if a resource satisfying ϕ were added to the current re-
source then agent a would know that ψ. Conversely the formula ϕ TKaψ in-
tuitively means that if a resource satisfying ϕ were removed from the current
resource then agent a would know that ψ. A sound and complete tableaux
method for ESL is given in [12].

An extension of ESL with public announcement is proposed in [12]. Let us
call this extension ESL-PA. ESL-PA extends ESL with the public announcement
construct [ϕ]ψ. A model for ESL-PA has the same structure as a model for
ESL. The satisfiability relation for the public announcement construct is the
following:

M, r � [ϕ]ψ iffM, r � ¬ϕ orM | ϕ,r � ψ

where:

• M | ϕ = (M,◦, e, (∼′a)a∈A,V) and

• ∼′a=∼a ∩{(s, t) ∈M ×M | M, s � ϕ iffM, t � ϕ}.

As illustrated in [12], ESL-PA is very expressive. No proof theory have yet been
devised for ESL-PA though.

8

The Simple Separation Logic (SSL) [21] is an extension of the propositional
classical logic with two separating operators ∧̇ and ‖̇. SSL is interpreted over
valuations. A valuation is a function from the set of propositional variables
of the language to the set {0,1}. A partial valuation is a partial function from
the set of propositional variables of the language to the set {0,1}. A partial
valuation V ′ is compatible with a valuation V iff for all p ∈ dom(V ′), V ′(p) =
V (p). In that case, V is called an extension of V ′ . A partition of the valuation V
is a set {V1,V2} of partial valuations such that {dom(V1),dom(V2)} is a partition
of the set of propositional variables and both V1 and V2 are compatible with V .
The satisfiability relation for the separating operators of SSL is as follows:

• V � ϕ ∧̇ψ iff there is a partition {V1,V2} of V such that for all extensions
V ′1 and V ′2 of V1 and V2, V ′1 � ϕ and V ′2 � ψ.

• V � ϕ ‖̇ψ iff there is a partition {V1,V2} of V such that for some extensions
V ′1 and V ′2 of V1 and V2, V ′1 � ϕ and V ′2 � ψ.

Let us consider a boolean formula β representing a belief base and a boolean
formula ψ, called the input formula, representing a new fact. The expression
β ◦ ψ denotes a set of valuations corresponding to the result of updating (or
revising) the belief base β with the new information ψ. In this context of belief
revision or update, it is postulated in [21] that the separating operators of SSL
express two kind of independence:

• ∧̇ expresses the independence of resources: the base β1 ∧̇ β2 can be up-
dated by updating β1 and β2 independently.

(β1 ∧̇ β2) ◦ψ = (β1 ◦ψ)∩ (β2 ◦ψ) (RELs)

• ‖̇ expresses the independence of processes: updating by the input for-
mula ψ1 ‖̇ψ2 can be performed by updating by ψ1 and ψ2 independently.

β ◦ (ψ1 ‖̇ψ2) = (β ◦ψ1) ◦ψ2 = (β ◦ψ2) ◦ψ1 (RELd3)

A PSPACE upper bound for both the model-checking and the satisfiability
problem of SSL is given in [21] by a translation into the Dynamic Logic of
Propositional Assignments (DL-PA) [4, 22].

6 Conclusion

In this report we have listed a great amount of logics with separation and up-
date. Each of this logics express a different kind of dynamic and/or separation.
All this logics have been studied as part of the ANR project DynRes. As a con-
clusion, we briefly enumerate all the results produced as part of the project in
the field of modal logics with separation and update.

3In this equation, β ◦ψ1 and β ◦ψ2 must be understood as the formula corresponding to the set
of valuations.

9

• The logics DBI [14, 12], LSM [12], DMBI [15, 12], ESL [13, 12], ESL-PA [13,
12] and SSL [21] have been invented.

• The undecidability of BBI [25] and of some variants of PRSPDL [5] has
been proved.

• The decidability of BI [19], SSL [21] and some variants of PRSPDL [1, 3]
has been shown.

• Some upper bounds have been stated for the complexity of the satisfia-
bility problems: PSPACE for SSL [21], NEXPTIME for some variants of
PRSPDL [1, 7] and 2EXPTIME for PRSPDL [3].

• Sound and complete tableaux methods have been devised for BI [19],
BBI [24], DBI [14, 12], LSM [12], DMBI [15, 12], ESL [13, 12] and for some
variants of PRSPDL [3].

• Sound and complete axiomatizations have been devised for BBI [18] and
for some variants of PRSPDL [2].

References

[1] Philippe Balbiani and Joseph Boudou. Decidability of iteration-free PDL
with parallel composition. In ADDCT workshop, 2014.

[2] Philippe Balbiani and Joseph Boudou. Iteration-free PDL with storing,
recovering and parallel composition: a complete axiomatization. J. Logic
and Computation, 2015. to appear.

[3] Philippe Balbiani and Joseph Boudou. Tableaux methods for proposi-
tional dynamic logics with separating parallel composition. In Amy P.
Felty and Aart Middeldorp, editors, CADE, volume 9195 of LNCS, pages
539–554. Springer, 2015.

[4] Philippe Balbiani, Andreas Herzig, and Nicolas Troquard. Dynamic logic
of propositional assignments: A well-behaved variant of PDL. In LICS,
pages 143–152. IEEE Computer Society, 2013.

[5] Philippe Balbiani and Tinko Tinchev. Definability and computability for
PRSPDL. In Advances in Modal Logic, pages 16–33. College Publications,
2014.

[6] Mario R. F. Benevides, Renata P. de Freitas, and Jorge Petrúcio Viana.
Propositional dynamic logic with storing, recovering and parallel com-
position. ENTCS, 269:95–107, 2011.

[7] Joseph Boudou. Exponential-size model property for PDL with separating
parallel composition. In Giuseppe F. Italiano, Giovanni Pighizzini, and
Donald Sannella, editors, Mathematical Foundations of Computer Science,
volume 9234 of LNCS, pages 129–140. Springer, 2015.

10

[8] James Brotherston and Max I. Kanovich. Undecidability of propositional
separation logic and its neighbours. In LICS, pages 130–139. IEEE Com-
puter Society, 2010.

[9] Luís Caires and Luca Cardelli. A spatial logic for concurrency (part I). Inf.
Comput., 186(2):194–235, 2003.

[10] Matthew Collinson and David J. Pym. Algebra and logic for resource-
based systems modelling. Mathematical Structures in Computer Science,
19(5):959–1027, 2009.

[11] Matthew Collinson, David J. Pym, and Chris M. N. Tofts. Errata for Formal
Aspects of Computing (2006) 18: 495-517 and their consequences. Formal
Asp. Comput., 19(4):551–554, 2007.

[12] Jean-René Courtault. Logiques de ressources dynamiques: modèles, pro-
priétés et preuves. PhD thesis, Université de Lorraine, 2015.

[13] Jean-René Courtault, Hans van Ditmarsch, and Didier Galmiche. An epis-
temic separation logic. In WoLLIC, volume 9160 of LNCS, pages 156–173.
Springer, 2015.

[14] Jean-René Courtault and Didier Galmiche. A modal BI logic for dynamic
resource properties. In Sergei N. Artëmov and Anil Nerode, editors, LFCS,
volume 7734 of LNCS, pages 134–148. Springer, 2013.

[15] Jean-René Courtault and Didier Galmiche. A modal separation logic for
resource dynamics. Journal of Logic and Computation, 2015. to appear.

[16] Stéphane Demri and Morgan Deters. Separation logics and modalities: A
survey. J. Applied Non-Classical Logics, 25(1):50–99, 2015.

[17] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of
regular programs. J. Comput. Syst. Sci., 18(2):194–211, 1979.

[18] Didier Galmiche and Dominique Larchey-Wendling. Expressivity prop-
erties of boolean BI through relational models. In FSTTCS, volume 4337
of LNCS, pages 357–368. Springer, 2006.

[19] Didier Galmiche, Daniel Méry, and David J. Pym. The semantics of
BI and resource tableaux. Mathematical Structures in Computer Science,
15(6):1033–1088, 2005.

[20] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT press,
2000.

[21] Andreas Herzig. A simple separation logic. In Leonid Libkin, Ulrich
Kohlenbach, and Ruy J. G. B. de Queiroz, editors, WoLLIC, volume 8071
of LNCS, pages 168–178. Springer, 2013.

11

[22] Andreas Herzig. Belief change operations: A short history of nearly ev-
erything, told in dynamic logic of propositional assignments. In Chitta
Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, KR. AAAI Press,
2014.

[23] Ágnes Kurucz, István Németi, Ildikó Sain, and András Simon. Decidable
and undecidable logics with a binary modality. Journal of Logic, Language
and Information, 4(3):191–206, 1995.

[24] Dominique Larchey-Wendling and Didier Galmiche. Exploring the rela-
tion between Intuitionistic BI and Boolean BI: an unexpected embedding.
Mathematical Structures in Computer Science, 19(3):435–500, 2009.

[25] Dominique Larchey-Wendling and Didier Galmiche. The undecidability
of boolean BI through phase semantics. In LICS, pages 140–149. IEEE
Computer Society, 2010.

[26] Peter W. O’Hearn and David J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[27] David J Pym. The semantics and proof theory of the logic of bunched impli-
cations, volume 26 of Applied Logic Series. Kluwer Academic Publishers,
2002.

[28] David J. Pym and Chris M. N. Tofts. A calculus and logic of resources and
processes. Formal Asp. Comput., 18(4):495–517, 2006.

[29] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS, pages 55–74. IEEE Computer Society, 2002.

12

