
High-Level Properties∗

Daniel Méry

September 2015

1 Introduction

Separation Logic (SL) is a logic for reasoning about programs that use pointers to
manipulate and mutate (possibily shared) data structures [15, 20]. It was mainly
designed to be used in the field of program verification as an assertion language to state
properties (invariants, pre- and post-conditions) about memory heaps using Hoare
triples. Some problems about pointer management, such as aliasing, are notoriously
difficult to deal with and SL has proven successful on that matter over the past fifteen
years. Building upon the Logic of Bunched Implications (BI) [19], from which it
borrows its spatial connectives ∗ (“star”) and −∗ (“magic wand”), SL adds the 7→
predicate (“points-to”), with x 7→ y meaning that y is the content of the memory cell
located at address x. One of the most interesting feature of SL (and a significant
part of its success) is its built-in ability for local reasoning, which allows program
specifications to be kept tighter as they need not consider (or worry about) memory
cells that are outside the scope of the program.

Being able to specify tight and concise properties about memory heaps more easily
would remain of a somewhat limited interest if such specifications could not be verified
or proved. It is therefore very important to provide (preferably efficient) proof-methods
and automated verification tools for SL and much effort has been put on that subject
recently. However, the task is not trivial since SL is not recursively enumerable [3, 7],
which means that no proof-system can be sound, finite and complete. Besides, as we
shall see later in this report, the subtle interactions between the connectives (mostly
−∗, ∗ and 7→) makes intuitive reasoning in SL a highly error-prone activity. Therefore,
most of the existing proof-systems and verification tools consider only restricted (but
usually decidable) fragments of SL, of which the symbolic heaps fragment [2] is the
most popular.

In Section 2 we recall the basic notions about the syntax and semantics of the heap
model of SL and illustrate how it can be used as an assertion language to specify (low-
and high-level) properties about mutable data structures. Section 3 then gives a sum-
mary of the decidability status of various popular fragments of SL. In Section 4 we

∗ Research report of the ANR project DynRes (project No. ANR-11-BS02-011).

1

High-Level Properties ANR DynRes

give an overview of the most significant works about theorem-proving in SL without
inductive predicates. Sections 5 and 6 are respectively dedicated to the two most sig-
nificant contributions to theorem proving in SL recently, namely, Brotherston’s purely
syntactic proof-system CyclistSL [5], which allows the definition of arbitrary inductive
predicates through production rules à la Martin-Löf but only addresses a small subset
of SL connectives, and Hou & Gore & Tiu’s labelled proof-system LSSL [14], which
supports the full set of SL connectives but does not allow the definition of arbitrary in-
ductive predicates, though it has support for inductive data structures such as acyclic
list-segments and binary trees through specifically devised rules, an approach that
does not scale well given the great variety of data structures encountered in real-life
programs. In Section 7 we present (yet) unpublished material about GMSL, our new
labelled proof-system developed in the context of Task 1.3 of the ANR project DynRes.
GMSL supports the full set of SL connectives and allows the definition of arbitrary in-
ductive predicates, which is a highly non-trivial result. GMSL currently is final-stage
work in progress that needs some polishing and should be ready for submission by the
end of the year.

2 Separation Logic

Separation Logic (SL) is a concrete model of the boolean variant of BI called Boolean BI
(BBI) [16] in which worlds are pairs of memory heaps and stacks called states. There
are many variants of SL. In this section we follow Reynolds’s original presentation of
SL [20] (which was called “Pointer Logic” back then) without the machinery of pointer
arithmetic.

2.1 The Heap Model

In Reynolds’s presentation, the set of values V al is the set of integers. V al contains two
disjoint subsets Loc and Atoms. Loc contains an infinite number of locations (addresses
of memory cells), while Atoms denote constants such as nil (which is always assumed
to be present). Besides values, we need an infinite and countable set V ar of program

variables.
A stack (or store) s : V ar →fin V al is a finite total function that associates values

to program variables and a heap h : Loc ⇀fin V al × V al is a finite partial function
that associates pairs of values to locations. The heap the domain of which is empty
is called the empty heap and is denoted ǫ. A state is a pair (s, h) where s is a stack
and h is a heap.

We use the notation h1#h2 to denote that the heaps h1 and h2 have disjoint domains.
Heap composition h1 · h2 is only defined when h1#h2 and is then equal to the union
of functions with disjoint domains. Heap composition extends to states as follows:

(s1, h1) · (s2, h2) = (s1, h1 · h2) iff s1 = s2 and h1#h2.

An expression e can either be a value v or a program variable x and is interpreted
w.r.t. a stack s so that JxKs = s(x) and JvKs = v.

2

High-Level Properties ANR DynRes

The language of SL contains the “points-to” predicate 7→, the equality predicate =,
the connectives of BI and the existential quantifier. It is defined as follows:

• P ::= e 7→ e1, e2 | e1 = e2 where e, e1 and e2 are expressions,

• F ::= P | I | F ∗ F | F −∗ F | ⊤ | ⊥ | F ∧ F | F → F | F ∨ F | ∃u.F

As usual, negation ¬F can be defined as (F → ⊥). One could also define ⊤ as (⊥ → ⊥)
instead of having it as primitive.

The semantics of the formulas is given by a forcing relation of the form (s, h) |= F
that asserts that the formula F is true in the state (s, h), where s is a stack and h is a
heap. It is also required that the free variables of F are included in the domain of s.

Definition 1 The semantics of the formulas is defined as follows:

• (s, h) |= e1 = e2 iff Je1Ks = Je2Ks

• (s, h) |= e 7→ e1, e2 iff dom(h) = {JeKs} and h(JeKs) = 〈 Je1Ks, Je2Ks 〉

• (s, h) |= ⊤ always

• (s, h) |= ⊥ never

• (s, h) |= A ∧ B iff (s, h) |= A and (s, h) |= B

• (s, h) |= A ∨ B iff (s, h) |= A or (s, h) |= B

• (s, h) |= A → B iff (s, h) |= A implies (s, h) |= B

• (s, h) |= I iff h = ǫ

• (s, h) |= A ∗ B iff ∃h1, h2. h1#h2, h1 · h2 = h, (s, h1) |= A and (s, h2) |= B

• (s, h) |= A −∗ B iff ∀h1. if h1#h and (s, h1) |= A then (s, h · h1) |= B

• (s, h) |= ∃u.A iff ∃v ∈ V al. ([s | u 7→ v], h) |= A

In the previous definition, the notation [s | u 7→ v] denotes the stack s′ such that

s′(u) = v and s′(x) = s(x) if x 6= u.

As usual, an entailment F |= G between formulas holds if and only if for all
states (s, h), if (s, h) |= F then (s, h) |= G. The formula F is valid in SL, written
|= F , if and only if ⊤ |= F , i.e., for all states (s, h), (s, h) |= F . By the semantics
of →, we can relate the notions of entailment and validity as follows: F |= G if and
only if |= F → G.

2.2 Interpreting Formulas

In the heap model, the worlds are heaps (collections of cells in storage) and the mul-
tiplicative conjunction A ∗ B (often called “star”) is true just when the current heap
can be separated1 (or split) into two components, the first one making A true, the
second one making B true. The multiplicative implication A−∗B (often called “magic

1 Hence the name of the logic.

3

High-Level Properties ANR DynRes

wand”) talks about heap extension, i.e., fresh pieces of heaps disjoint from the current
heap. More precisely, the magic wand says that whenever a fresh heap disjoint from
the current heap makes A true, the combined fresh and current heap makes B true.
The other connectives are interpreted pointwise.

The formula (x 7→ 3, 5) ∗ ((x 7→ 7, 5) −∗ P) is a good example of “update as heap
extension”. It states that the current heap contains a cell located at address x holding
the pair 〈 3, 5 〉 and that, should we update the car of this pair to 7, the formula P
would hold in the resulting heap. Indeed, the multiplicative conjunction ∗ splits the
heap in two parts, a first one where (x 7→ 3, 5) holds and a second one where the
location x is dangling. The semantics of −∗ and 7→ then ensures that P must be true
when the second heap is extended with a fresh and disjoint heap that binds x to a
location containing the pair 〈 7, 5 〉.

2.3 Separation Logic as an Assertion Language

The actual use of SL is as an assertion language to state invariants, pre- and post-
condition in Hoare triples [19]. For example, consider an operation that disposes of
memory by creating dangling pointers through the command dispose(e) which deallo-
cates a location. From a semantic point of view, it removes a location from the heap
and it can be defined by the following axiom:

{ P ∗ ∃ u1 u2. e 7→ u1, u2 }
dispose(e)

{ P }

where u1, u2 are not free in e. Reasoning backwards from ⊤ we can find cases under
which a program is safe to execute. With a double dispose we obtain ⊥ for the
precondition as expected, indicating that the program is not safe to execute for any
start state:

{ ⊥ }
{ ⊤ ∗ ∃ u1 u2. x 7→ u1, u2 ∗ ∃ u3 u4. x 7→ u3, u4 }

dispose(x)
{ ⊤ ∗ ∃ u1 u2. x 7→ u1, u2 }

dispose(x)
{ ⊤ }

The ability to state low-level properties about memory states (such as dispose) and
Hoare Logic programming axioms using SL’s assertion language is already very use-
ful, mainly because SL has built-in facilities for local reasoning that allows a program
specification to do without cumbersome conditions about memory cells that are out-
side the program’s footprint [19]. However, SL only achieves its full potential w.r.t.
program verification when moving to high-level properties about data structures that
are mutated by pointer-manipulating programs. Most of these data structures are
inductive and can be expressed using SL’s assertion language. For example, the usual
definition for an acyclic singly-linked list segment ls(e1, e2) that starts at address e1

4

High-Level Properties ANR DynRes

and ends with a memory cell containing e2 goes as follows:

ls(e1, e2)
def
= (e1 = e2 ∧ I) ∨ (e1 6= e2 ∧ ∃u.(e1 7→ u ∗ ls(u, e2)))

Such a formula states that a memory heap corresponds to an empty list (a list with
identical starting and ending points) if it is empty and corresponds to a non-empty
list segment (with distinct starting and ending points e1 and e2) if it can be split into
two disjoints heaps, one being the first node of the list segment located at address e1

and pointing to address u, the second one corresponding to a list segment that starts
at address u and ends with a memory cell containing e2.

2.4 Separation Logic and High-Level Properties

A fairly standard example of a high-level property about list segments is a property
stating that the combination of a heap that represents a list segment ls(x, x′) with
a disjoint heap that represents a list segment ls(x′, y) should result in a heap that
represents a list segment ls(x, y). The corresponding entailment is the following:

(LC)
def
= ls(x, x′) ∗ ls(x′, y) |= ls(x, y)

However, as intuitive and reasonable as it might seem, such a property is not valid
in SL when ls represents acyclic list segments, which is evidence that one should be
very careful when reasoning in SL as it is not at all trivial and highly error prone.
For a simple counter-model, let us consider two locations ℓ1 and ℓ2, a stack s and two
singleton heaps h1 and h2 heaps such that

s = [x 7→ ℓ1, x′ 7→ ℓ2, y 7→ ℓ1], h1(ℓ1) = ℓ2 and h2(ℓ2) = ℓ1

The heaps h1 and h2 respectively represent the two acyclic list segments ℓ1 → ℓ2 and
ℓ2 → ℓ1. Therefore, both (s, h1) |= ls(x, x′) and (s, h2) |= ls(x′, y) hold. Since h1

and h2 are disjoint, h = h1 · h2 is defined and such that (s, h) |= ls(x, x′) ∗ ls(x′, y).
However, since h represents a cycle ℓ1 ⇄ ℓ2, h is not the empty heap, but then
it cannot be the case that (s, h) |= ls(x, y) since otherwise, by definition of the ls
predicate, ls(ℓ1, ℓ1) would imply that h should satisfy I and thus be the empty heap,
a contradiction.

The invalidity of (LC) comes from the fact that two acyclic list segments ls(x, x′)
and ls(x′, y) can give rise to what is often called a panhandle list, i.e., a list that
contains a cycle after a possibly empty acyclic initial segment. A panhandle list occurs
whenever y in the second list segment points to an address occurring in the first list
segment. Therefore, one needs to strengthen (LC) so as to prevent panhandle lists in
order to obtain a valid high-level property about concatenation of list segments in the
presence of acyclicity. The corresponding entailment is the following:

(ALC)
def
= (ls(x, x′) ∧ ¬((ls(y, y′) ∧ ¬I) −∗ ⊥)) ∗ ls(x′, y) |= ls(x, y)

The subformula ¬((ls(y, y′) ∧ ¬I) −∗ ⊥) ensures that it is not impossible to extend
the heap representing the first list segment ls(x, x′) with a non-empty list segment

5

High-Level Properties ANR DynRes

starting at address y, which by the semantics of −∗ implies that y cannot be an address
occurring in ls(x, x′). Let us note that the entailment would not remain valid without
¬I enforcing the non-emptyness of ls(y, y′) since the non-emptyness of ls(y, y′) is what
ensures that y is an (allocated) address.

3 Decidability of Separation Logic

The quantifier-free fragment of SL is decidable, but full SL is not [7]. Full SL is
not even recursively enumerable, so that no proof-system for SL can be finite, sound
and complete at the same time. Restricting the points-to predicate to only one field
gives the variant called 1SL, which is shown to be equivalent to second order logic
and therefore undecidable [3]. Restricting 1SL further so as to allow quantification
on only one variable (with finitely many program variables), 1SL is decidable [9].
However, allowing two quantified variables instead of one, 1SL becomes undecidable
once again [10].

Abstract Separation Logic (ASL) is SL with no equality or points-to predicates,
but with propositional variables instead. Heaps and stacks are replaced with worlds
arranged in a Kripke style semantics based on relational or partial monoidal structures.
ASL can be viewed as a variant of Boolean BI where world composition reflects the
usual properties of heap composition in the heap model of SL: identity, commutativity,
associativity, partial determinism, cancellativity, indivisibility of the unit, disjointness
and cross-split (if a heap can be split in several distinct ways, there are heaps that
are intersections of theses splittings). ASL is not decidable, even at the propositional
level [6, 16].

A very widely used fragment of SL is the symbolic heaps fragment [2] (also called
the Π/Σ fragment), which is defined as follows:

P ::= e = e′ | ¬P Π ::= ⊤ | P | Π ∧ Π
S ::= e 7→ [f : e] Σ ::= I | S | Σ ∗ Σ

Compared with the original Reynold’s semantics, the points-to predicate has a list of
named fields on its right-hand-side (f being the name of the field, e being its contents).
Symbolic heaps S are pairs Π ∧ Σ and entailments S ⊢ S′ are restricted to symbolic
heaps. The popularity of the symbolic heaps fragment comes from its decidability,
which is why most of the model-checking tools developed for SL are designed to work
with this fragment (SmallFoot being the first and most famous one [1]), as one can
devise sound, complete and terminating procedures.

Unfortunately, decidability also comes at the expense of expressivity. Since multi-
plicative implication −∗ has been left out, the symbolic heaps fragment cannot express
properties about heap extension. Moreover, most of the induction hypotheses given in
the literature for proving properties about programs that manipulate inductive data
structures (for example properties about list concatenation) require the −∗ connective.
Even without considering such formulas, the symbolic heaps fragment cannot express
many useful properties about heaps (for example cross-split or partial determinism)
that are used is ASL to distinguish classes of models and variants of the logic.

6

High-Level Properties ANR DynRes

4 Theorem Proving in Separation Logic

Most of the works and tools (SmallFoot, SpaceInvader, VeriStar, Asterix) developed
for SL focus on model checking in the symbolic heaps fragment, which is decidable but
has limited expressive power. There is little work about theorem proving in SL, even
more so when one considers fragments beyond the symbolic heaps.

A first approach to theorem proving in a decidable fragment of SL that goes beyond
the symbolic heaps fragment can be found in [8], which describes first-order translations
of SL. BBI can also be directly translated to first-order logic [13]. Unfortunately, first-
order translations cannot really be counted as proof-search methods in SL itself and
are moreover not efficient with current first-order theorem provers.

The first actual attempt at proof-search in SL is the Galmiche & Mery’s tableau
proof-system TSL [12]. The fragment considered in [12] is called SLP and discards
quantifiers and equality. As a further restriction, SLP only allows locations in the
left-hand-side of the points-to predicate (while Reynold’s semantics allows arbitrary
values such as nil). The authors then explain how to extend the tableau system to
deal with quantifiers and equality, thus sacrificing completeness. The TSL tableau
system uses labels and constraints arranged into a structure called a resource graph

that keeps track of the relations betweens heaps that must be satisfied by a given
formula for it to be valid. Validity is characterised by two distinct notions of logical

and structural consistency. Logical consistency simply corresponds to the branch-
closing conditions of the tableau system and ensures that the resource graph actually
represents a forcing relation as prescribed by the SL heap model (e.g., no actual
heap can force ⊥). Structural consistency ensures that the resource graph actually
represents a feasible (realisable) heap structure and uses the concept of heap measures

(functions setting minimal realisable sizes for the heaps represented in the resource
graphs) and points-to distributions (functions describing which points-to predicates
should be forced by individual heap cells of the heaps represented in the resource
graph). Because of this extra machinery, TSL might be hard to automate and there
is currently no tools implementing it. Furthermore, TSL has no support for inductive
predicates and can therefore only state low-level properties about memory states, but
cannot directly be used to state high-level properties.

Another work based on capturing relations between heaps inside a graphical struc-
ture is the PSL labelled sequent proof-system by Lee & Park [17]. PSL is designed to
deal with full SL and thus has rules for the multiplicative implication. As with the
Galmiche & Mery’s tableau system, the points-to predicate only allows locations on
its left-hand-side. Dealing with full SL, PSL necessarily has to be incomplete. Sadly,
it is also unsound as the rule for combining heaps (the Disj−∗ rule) relies on the
wrong assumption that two heaps with no common subheap should be disjoint, while
in Reynold’s semantics two heaps with intersecting domains might share no common
subheap. For example, the singleton heaps h1 and h2 such that h1(ℓ1) = a1 and
h2(ℓ1) = a2 share no common subheap (since a1 and a2 denote distinct atoms) and
are nevertheless not disjoint (since they both have location ℓ1 in their domain).

7

High-Level Properties ANR DynRes

Id
F ⊢ F

⊥L

⊥ ∗ F ⊢ G
⊤R

F ⊢ ⊤
=R

F ⊢ x = x

=L

x = y ∗ x 6= y ∗ F ⊢ G

1

7→
x

1

7→ y ∗ x
1

7→ z ∗ F ⊢ G

2

7→
x

2

7→ y1, y2 ∗ x
2

7→ z1, z2 ∗ F ⊢ G

F ⊢ H H ⊢ G
Cut

F ⊢ G

F ⊢ G
IL

I ∗ F ⊢ G

F ⊢ G
IR

F ⊢ G ∗ I

F1 ⊢ G1 F2 ⊢ G2

∗
F1 ∗ F2 ⊢ G1 ∗ G2

F1 ∗ F ⊢ G F2 ∗ F ⊢ G
∨L

(F1 ∨ F2) ∗ F ⊢ G

F ⊢ Gi ∗ G
i ∈ {1, 2}∨R

F ⊢ (G1 ∨ G2) ∗ G

Figure 1: Basic proof-rules in CyclistSL. Double-lines indicate proof-
rules with interchangeable premiss and conclusion.

5 Brotherston’s CyclistSL System

A fully syntactic approach to proof-search in SL is Brotherston’s CyclistSL proof-
system and its associated automated theorem-prover Cyclist [5]. Brotherston’s system
deals with a fragment that only includes equality and inequality, two forms of the
points-to predicate (with one and with two fields on the right-hand-side), additive
disjunction and multiplicative conjunction. Explicit quantification, the multiplicative
conjunction as well as additive implication, negation and conjunction are left out.
More formally, CyclistSL formulas are given by the following grammar:

F ::= ⊤ | ⊥ | x = y | x 6= y | I | x
1

7→ y | x
2

7→ y, z | F ∨ F | F ∗ F | P (x)

where x, y, z range over variables in V ar, P ranges over a fixed finite set of predicate
symbols and x ranges over tuples of variables of appropriate length to match the arity
of P . The rules of the CyclistSL proof-system are given in Figure 1.

Although it addresses only a rather restricted fragment of SL, CyclistSL is interesting
because it supports generic definitions of arbitrary inductive predicates through the
notion of inductive rules sets which are sets of rules F ⇒ P (x) in the style of Martin-
Löf productions where F and P (x) are formulas, with P a predicate symbol. An

annotated rule F
z

⇒ P (x) means that gathering all the free variables in F and in x
exactly results in the tuple z. For example, the predicate ls that represents singly-
linked list segments can be defined as follows:

I
x

⇒ ls(x, x) x
1

7→ z ∗ ls(z, y)
x,y,z

⇒ ls(x, y)

As defined above, the predicate ls(x, y) denotes a singly-linked list segment that starts
with a cell located at address x and ends with a cell containing y.

8

High-Level Properties ANR DynRes

ls(x, y) ⊢ ls(x, y)
IL

I ∗ ls(x, y) ⊢ ls(x, y)

x
1

7→ z ⊢ x
1

7→ z (†) ls(z, x′) ∗ ls(x′, y) ⊢ ls(z, y)
∗

x
1

7→ z ∗ ls(z, x′) ∗ ls(x′, y) ⊢ x
1

7→ z ∗ ls(z, y)
lsR2

x
1

7→ z ∗ ls(z, x′) ∗ ls(x′, y) ⊢ ls(x, y)

lsL

(†) ls(x, x′) ∗ ls(x′, y) ⊢ ls(x, y)

Figure 2: CyclistSL cyclic proof of (LC).

With inductive rules available for a predicate symbol P , the next step in Brother-
ston’s system is to define left- and right-unfolding sequent-style inference rules. Each

inductive rule F
z

⇒ P (x) gives rise to a right-unfolding rule and to one premiss (using
the left part of the inductive rule) of the single multi-premiss left-unfolding rule. For
example, the ls predicate gives rise to the following right- and left-unfolding rules:

Γ ⊢ ∆ ∗ I
lsR2

Γ ⊢ ∆ ∗ ls(x, x)

Γ ⊢ ∆ ∗ x
1

7→ z ∗ ls(z, y)
lsR1

Γ ⊢ ∆ ∗ ls(x, y)

Γ [x/y] ∗ I ⊢ ∆[x/y] Γ ∗ x
1

7→ z ∗ ls(z, y) ⊢ ∆
lsL

Γ ∗ ls(x, y) ⊢ ∆

where for lsL, y gets renamed to x in the left premiss and z (in the right premiss) does
not occur free in the conclusion2.

CyclistSL system handles inductive predicates with the notion of cyclic proofs. A
derivation D for an initial sequent S is a pre-proof if each end sequent B in D which
is not the conclusion of an inference rule can be assigned a sequent C in D such that
C = Bθ for some substitution θ. B is then called a bud (in D) and C its companion.

In order to be a cyclic proof, a pre-proof P needs to satisfy the global trace condition:
for every infinite path in P , there is a trace following some tail of the path that
contains infinitely many progress points. The full technical definitions of path, trace
and progress points are given in [5]. For brevity, let us simply illustrate the previous
notions with an example also given in [5].

Let D be the derivation depicted in Figure 2, which is a cyclic proof of the (LC)
entailment presented in Section 2.4. Let B be the right-most branch of D. The end
sequent B of B is a bud and the initial sequent S of D is its companion C (both are
marked with a dagger sign to be more easily identified). Let us note that C might not
always be equal to S in the general case. Having a bud and a companion in each of
its open banches, the derivation D is a pre-proof. The infinite sequence of sequents
obtained by travelling forward on B from its initial sequent S to its bud B, jumping

2 The actual conditions on freshness and variable renaming are a bit more complex and have been
omitted for simplicity. See [5] for full details.

9

High-Level Properties ANR DynRes

back to its companion C when reaching B, and cycling all over again towards B is
called a path. In each sequent of this path P , we have underlined an ls predicate
that follows the path. The infinite sequence formed by those underlined ls predicates
that represent the successive transformations of the companion into the bud is called
a trace following P . A progress point in a trace following a path is simply a point
where the inductive predicate that follows the path is unfolded using its corresponding
case-split left-unfolding rule. In our example, the first expansion step is a progress
point using the left-unfolding rule lsL. Since B is the only open branch and contains
a progress point between C and B that is encountered infinitely many times cycling
from C to B, the derivation D satisfies the global trace condition and is therefore a
cyclic proof.

The fact that the (LC) entailment is provable in CyclistSL implies that the ls pred-
icate represents arbitrary (i.e., not necessarily acyclic) list segments in this system, or
it would otherwise be unsound since the (LC) entailment is not valid in SL for acyclic
list segments as shown in Section 2.4. However, the (ALC) entailment for acyclic list
segments cannot be expressed and thus cannot be proved in the restricted language
of CyclistSL as it lacks additive conjunction and multiplicative implication.

The ability to deal with arbitrary inductive predicates through the notion of cyclic
proofs is the most interesting feature of Brotherston’s CyclistSL system since most
high-level properties used in program verification involve inductive data structures.
However, the logical fragment it addresses is very restricted. On that point, let us
remark that a previous work considered a more expressive logical fragment, namely, full
propositional BI with inductive predicates [4]. Sadly, the paper defines the machinery
of inductive rule sets and cyclic proofs using the purely syntactic sequent proof-system
for (standard intuitionistic) BI but mistakenly interprets these notions using the point-
wise boolean semantics of BBI. This mismatch voids the application to SL developed
in the paper through examples using the ls predicate since SL is a concrete model
of BBI, which currently has no known purely syntactic sequent proof-system.

6 The LSSL Labelled Sequent System

A very recent work on theorem proving in SL beyond the symbolic heaps fragment
is the LSSL labelled sequent proof-system by Hou & Goré & Tiu [14]. Their proof-
system supports full SL (thus sacrificing completeness) and has been implemented in
an automated tool called Separata+. When restricted to the symbolic heaps fragments,
the proof-procedure implemented in Separata+ terminates.

LSSL takes inspiration from the Galmiche & Mery’s tableau system and from the
Lee & Park’s labelled sequent system but incorporates graph relations directly into the
sequents instead of maintaining a separate graphical structure. Therefore, sequents
in LSSL take the form G; Γ ⊢ ∆. The Γ part contains only labelled formula h : A,
where h is a label representing a heap and A is a SL formula. The G part contains
only ternary relations (h1, h2 ⊲ h0) meaning that the heap h0 can be split into two
disjoint subheaps h1 and h2 or, conversely, that the combination of the two heaps h1

and h2 is defined and results in the heap h0.

10

High-Level Properties ANR DynRes

Identity and cut:

id
G; Γ ; h : e1 7→ e2 ⊢ h : e1 7→ e2; ∆

id2

G; Γ ; h : e1 7→ e2, e3 ⊢ h : e1 7→ e2, e3; ∆

G; Γ [e1/e2] ⊢ ∆[e1/e2] G; Γ ⊢ h : e1 = e2; ∆
cut=

G; Γ ⊢ ∆

Logical Rules:

⊥L

G; Γ ; h : ⊥ ⊢ ∆

G[ǫ/h]; Γ [ǫ/h] ⊢ ∆[ǫ/h]
IL

G; Γ ; h : I ⊢ ∆

IR

G; Γ ⊢ ǫ : I; ∆

G; Γ ⊢ h : A; ∆ G; Γ ; h : B ⊢ ∆
→L

G; Γ ; h : A → B ⊢ ∆

G; Γ ; h : A ⊢ h : B; ∆
→R

G; Γ ⊢ h : A → B; ∆

(h1, h2 ⊲ h0); G; Γ ; h1 : A; h2 : B ⊢ ∆
∗L

G; Γ ; h0 : A ∗ B ⊢ ∆

(h1, h0 ⊲ h2); G; Γ ; h1 : A ⊢ h2 : B; ∆
−∗R

G; Γ ⊢ h0 : A −∗ B; ∆

(h1, h2 ⊲ h0); G; Γ ⊢ h1 : A; h0 : A ∗ B; ∆ (h1, h2 ⊲ h0); G; Γ ⊢ h2 : B; h0 : A ∗ B; ∆
∗R

(h1, h2 ⊲ h0); G; Γ ⊢ h0 : A ∗ B; ∆

(h1, h0 ⊲ h2); G; Γ ; h0 : A −∗ B ⊢ h1 : A; ∆ (h1, h0 ⊲ h2); G; Γ ; h0 : A −∗ B; h2 : B ⊢ ∆
−∗L

(h1, h0 ⊲ h2); G; Γ ; h0 : A −∗ B ⊢ ∆

G; Γ ; h : A[y/x] ⊢ ∆
∃L

G; Γ ; h : ∃x.A ⊢ ∆

G; Γ ⊢ h : A[e/x]; h : ∃x.A; ∆
∃R

G; Γ ⊢ h : ∃x.A; ∆

G; Γ θ ⊢ ∆θ
=L

G; Γ ; h : e1 = e2 ⊢ ∆

=R

G; Γ ⊢ h : e = e; ∆

Side conditions:

Each label being substituted cannot be ǫ, each expression being substituted cannot be nil.
In =L, θ = mgu({e1, e2}).
in ∗L, −∗R, the labels h1 and h2 do not occur in the conclusion.
In ∃L, y is not free in the conclusion.

Figure 3: Logical rules in LSSL.

11

High-Level Properties ANR DynRes

(h, ǫ ⊲ h); G; Γ ⊢ ∆
U

G ⊢ ∆

(h3, h5 ⊲ h0); (h2, h4 ⊲ h5); (h1, h2 ⊲ h0); (h3, h4 ⊲ h1); G; Γ ⊢ ∆
A

(h1, h2 ⊲ h0); (h3, h4 ⊲ h1); G; Γ ⊢ ∆

(h2, h1 ⊲ h0); (h1, h2 ⊲ h0); G; Γ ⊢ ∆
E

(h1, h2 ⊲ h0); G; Γ ⊢ ∆

(ǫ, ǫ ⊲ h2); G[ǫ/h1]; Γ [ǫ/h1] ⊢ ∆[ǫ/h1]
D

(h1, h1 ⊲ h2); G; Γ ⊢ ∆

(ǫ, h2 ⊲ h2); G[h2/h1]; Γ [h2/h1] ⊢ ∆[h2/h1]
Eq1

(ǫ, h1 ⊲ h2); G; Γ ⊢ ∆

(ǫ, h2 ⊲ h2); G[h1/h2]; Γ [h1/h2] ⊢ ∆[h1/h2]
Eq2

(ǫ, h1 ⊲ h2); G; Γ ⊢ ∆

(h1, h2 ⊲ h0); G[h0/h3]; Γ [h0/h3] ⊢ ∆[h0/h3]
P

(h1, h2 ⊲ h0); (h1, h2 ⊲ h3); G; Γ ⊢ ∆

(h1, h2 ⊲ h0); G[h2/h3]; Γ [h2/h3] ⊢ ∆[h2/h3]
C

(h1, h2 ⊲ h0); (h1, h3 ⊲ h0); G; Γ ⊢ ∆

(h5, h6 ⊲ h1); (h7, h8 ⊲ h2); (h5, h7 ⊲ h3); (h6, h8 ⊲ h4); (h1, h2 ⊲ h0); (h3, h4 ⊲ h0); G; Γ ⊢ ∆
CS

(h1, h2 ⊲ h0); (h3, h4 ⊲ h0); G; Γ ⊢ ∆

Side conditions:

Each label being substituted cannot be ǫ.
In A, the label h5 does not occur in the conclusion.
In CS, the labels h5, h6, h7, h8 do not occur in the conclusion.

Figure 4: Structural rules in LSSL.

LSSL has two forms of substitutions: one for labels and one for expressions. Label

substitutions are written [h1/h′

1, . . . , hn/h′

n] meaning that h′

i gets replaced with hi.
Label substitutions handle equality betweens heaps. Expression substitutions are
mappings [x1 7→ e1, . . . , xn 7→ en] from program variables to expressions meaning
that xi gets replaced with ei. The result of applying an expression substitution θ
to the expression e is written eθ. Equality betweens expressions is handle via stan-
dard syntactic unification as in logic programming. Therefore, given pairs of expres-
sions E = { (e1, e′

1), . . . , (en, e′

n) }, a unifier is an expression substitution θ such that
eiθ = e′

iθ. The most general unifier of E is defined as usual and written mgu(E) when
it exists. In LSSL, nil is the only value allowed to appear in expressions.

LSSL has logical rules that are direct translations of the logical rules of TSL. LSSL

also comes with a plethora of structural rules to capture the various properties of heap
composition (unit, associativity, exchange, disjointness, equality, partial determinism,
cancellativity, cross-split) while those properties are captured as a closure operator on
labels in TSL. The logical and structural rules of LSSL are depicted in Figure 3 and
Figure 4. Since negation ¬A is defined as (A → ⊥), the following rules are easily
derivable in LSSL:

G; Γ ⊢ h : A; ∆
¬L

G; Γ ; h : ¬A ⊢ ∆

G; Γ ; h : A ⊢ h : ⊤; ∆
¬R

G; Γ ⊢ h : ¬A; ∆

Like Brotherston’s CyclistSL, LSSL incorporates two forms of the 7→ predicate: the
first one with one field and the second one with two fields on the right-hand-side. LSSL

12

High-Level Properties ANR DynRes

7→L1

G; Γ ; ǫ : e1 7→ e2 ⊢ ∆

(h1, h0 ⊲ h2); G; Γ ; h1 : e1 7→ e2 ⊢ ∆
HE

G; Γ ⊢ ∆

(ǫ, h0 ⊲ h0); G[ǫ/h1, h0/h2]; Γ [ǫ/h1, h0/h2]; h0 : e1 7→ e2 ⊢ ∆[ǫ/h1, h0/h2]

(h0, ǫ ⊲ h0); G[ǫ/h2, h0/h1]; Γ [ǫ/h2, h0/h1]; h0 : e1 7→ e2 ⊢ ∆[ǫ/h2, h0/h1]
7→L2

(h1, h2 ⊲ h0); G; Γ ; h0 : e1 7→ e2 ⊢ ∆

7→L3

(h1, h2 ⊲ h0); G; Γ ; h1 : e 7→ e1; h2 : e 7→ e2 ⊢ ∆

G; Γ θ; h : e1θ 7→ e2θ ⊢ ∆θ
7→L4

G; Γ ; h : e1 7→ e2; h : e3 7→ e4 ⊢ ∆

G[h1/h2]; Γ [h1/h2]; h1 : e1 7→ e2 ⊢ ∆[h1/h2]
7→L5

G; Γ ; h1 : e1 7→ e2; h2 : e1 7→ e2 ⊢ ∆

NIL
G; Γ ; h : nil 7→ e ⊢ ∆

(h3, h4 ⊲ h1); (h5, h6 ⊲ h2); G; Γ ; h3 : e1 7→ e2; h5 : e1 7→ e3 ⊢ ∆ (h1, h2 ⊲ h0); G; Γ ⊢ ∆
HC

G; Γ ⊢ ∆

Side conditions:

Each label being substituted cannot be ǫ, each expression substituted cannot be nil.
In 7→L4

, θ = mgu({(e1, e3), (e2, e4)}).
In HE, h0 occurs in conclusion, h1, h2, e1 are fresh.
In HC, h1, h2 occur in the conclusion, h0, h3, h4, h5, h6, e1, e2, e3 are fresh in the premise.

Figure 5: Pointer rules in LSSL.

pointer rules for the 7→ predicate with one field are given in Figure 5. The rules for
the 7→ predicate with two fields are similar. The 7→ predicates are not restricted to
have a location on their left-hand-side but can have arbitrary values as in the original
Reynold’s semantics, which means that some formulas that are valid in Galmiche &
Mery’s tableau system and in Lee & Park’s labelled sequent system are not valid
in LSSL. One such formula is I → ¬((e1 7→ e2) −∗ ¬(e1 7→ e2)), which means that
if the current heap is empty then it is not possible that extending it with a heap
(e1 7→ e2) could result in anything else that the heap (e1 7→ e2). In Reynold’s semantics
(s, ǫ) 6|= ¬((e1 7→ e2) −∗ ¬(e1 7→ e2)) is equivalent to ∀(s, h). (s, h) 6|= e1 7→ e2, which
holds if and only if e1 is not a location (such as nil for example).

Unlike Brotherston’s CyclistSL, LSSL does not allow the definition of arbitrary in-
ductive predicates. LSSL does have support for inductive predicates such as acyclic
singly-linked list segments and binary trees, but through a whole bunch of proof-rules3

specifically devised to handle all the particular aspects of those predicates. The ap-
proach to inductive predicates by devising specific sets of rules is certainly bound
to have scalability problems given the great variety of data structures encountered
in high-level properties and given the fact that even the most simple inductive data
structure, namely lists, admit a huge amount of variants: singly-linked, doubly-linked,

3 Eight rules for acyclic singly-linked list segments, six rules for binary trees.

13

High-Level Properties ANR DynRes

G; Γ [e1/e2] ⊢ ∆[e1/e2]
LS1

G; Γ ; ǫ : ls(e1, e2) ⊢ ∆

LS2

G; Γ ⊢ ǫ : ls(e, e); ∆

G; Γ ; h : I ⊢ ∆
LS3

G; Γ ; h : ls(e, e) ⊢ ∆

G; Γ [nil/e]; h : I ⊢ ∆[nil/e]
LS4

G; Γ ; h : ls(nil, e) ⊢ ∆

ida

G; Γ ; h : A ⊢ h : A; ∆

G; Γ θ1; h : I ⊢ ∆θ1 G; Γ θ2; h : ls(e1θ2, e2θ2) ⊢ ∆θ2

LS5

G; Γ ; h : ls(e1, e2); h : ls(e3, e4) ⊢ ∆

(h1, h2 ⊲ h0); G; Γ ; h1 : ds(e1, e2); h0 : ls(e1, e3); h2 : ls(e2, e3) ⊢ ∆
LS6

(h1, h2 ⊲ h0); G; Γ ; h1 : ds(e1, e2); h0 : ls(e1, e3) ⊢ ∆

(h1, h2 ⊲ h0); G; Γ ; h1 : ds(e2, e3); h0 : ls(e1, e3); h2 : ls(e1, e2) ⊢ ∆
LS7

(h1, h2 ⊲ h0); G; Γ ; h1 : ds(e2, e3); h0 : ls(e1, e3) ⊢ ∆

(h1, h2 ⊲ h0); (h1, h3 ⊲ h4); G;
Γ ; h1 : ds(e1, e2); h3 : ad(e3) ⊢ h2 : ls(e2, e3); h0 : ls(e1, e3); h : G(ad(e3)); ∆

LS8

(h1, h2 ⊲ h0); (h1, h3 ⊲ h4); G;
Γ ; h1 : ds(e1, e2); h3 : ad(e3) ⊢ h0 : ls(e1, e3); h : G(ad(e3)); ∆

IC
(h1, h2 ⊲ h0); G; Γ ; h1 : ad(e1); h2 : ad(e1)′ ⊢ h3 : G(ad(e1)); h3 : G(ad(e1)′); ∆

Abbreviations and side conditions:

ds(e, e′) is either (e 7→ e′) or ls(e, e′).
ad(e) stands for one of (e 7→ e′), (e 7→ e′, e′′), ls(e, e′), for some e′, e′′. Similarly for ad(e)′.

G(ad(e)) is defined as G(e 7→ e′)
def
= G(e 7→ e′, e′′)

def
= ⊥, G(ls(e, e′))

def
= (e = e′).

In LS5, θ1 = mgu({(e1, e2), (e3, e4)}) and θ2 = mgu({(e1, e3), (e2, e4)}).
In LS8, if e3 is nil, then (h1, h3 ⊲ h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion are optional.
In LS8, if ds(e1, e2) is (e1 7→ e2), then (h1, h3 ⊲ h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion
are optional, on the condition that h′ : (e1 = e3) occurs in the RHS of the conclusion, for some h′.

Figure 6: Rules for acyclic list segments in LSSL.

14

High-Level Properties ANR DynRes

ida

(h3, h1 ⊲ h4); (h1, h2 ⊲ h0);
h1 : ls(x, x′); h2 : ls(x′, y); h3 : ls(y, y′) ⊢ h2 : ls(x′, y); h3 : y = y′; h3 : I; h4 : ⊥; h0 : ls(x, y)

LS8

(h3, h1 ⊲ h4); (h1, h2 ⊲ h0);
h1 : ls(x, x′); h2 : ls(x′, y); h3 : ls(y, y′) ⊢ h3 : y = y′; h3 : I; h4 : ⊥; h0 : ls(x, y)

Π1

ida

(h3, h1 ⊲ h4); (h1, h2 ⊲ h0); h1 : ls(x, x′); h2 : ls(x′, y); h3 : I ⊢ h3 : I; h4 : ⊥; h0 : ls(x, y)
LS3

(h3, h1 ⊲ h4); (h1, h2 ⊲ h0); h1 : ls(x, x′); h2 : ls(x′, y); h3 : ls(y, y) ⊢ h3 : I; h4 : ⊥; h0 : ls(x, y)

Π2

Π1 Π2

cut=

(h3, h1 ⊲ h4); (h1, h2 ⊲ h0); h1 : ls(x, x′); h2 : ls(x′, y); h3 : ls(y, y′) ⊢ h3 : I; h4 : ⊥; h0 : ls(x, y)
¬L

(h3, h1 ⊲ h4); (h1, h2 ⊲ h0); h1 : ls(x, x′); h2 : ls(x′, y); h3 : ls(y, y′); h3 : ¬I ⊢ h4 : ⊥; h0 : ls(x, y)
∧L

(h3, h1 ⊲ h4); (h1, h2 ⊲ h0); h1 : ls(x, x′); h2 : ls(x′, y); h3 : ls(y, y′) ∧ ¬I ⊢ h4 : ⊥; h0 : ls(x, y)
−∗R

(h1, h2 ⊲ h0); h1 : ls(x, x′); h2 : ls(x′, y) ⊢ h1 : (ls(y, y′) ∧ ¬I) −∗ ⊥; h0 : ls(x, y)
¬L

(h1, h2 ⊲ h0); h1 : ls(x, x′); h1 : ¬((ls(y, y′) ∧ ¬I) −∗ ⊥); h2 : ls(x′, y) ⊢ h0 : ls(x, y)
∧L

(h1, h2 ⊲ h0); h1 : ls(x, x′) ∧ ¬((ls(y, y′) ∧ ¬I) −∗ ⊥); h2 : ls(x′, y) ⊢ h0 : ls(x, y)
∗L

h0 : (ls(x, x′) ∧ ¬((ls(y, y′) ∧ ¬I) −∗ ⊥)) ∗ ls(x′, y) ⊢ h0 : ls(x, y)
→R

⊢ h0 : ((ls(x, x′) ∧ ¬((ls(y, y′) ∧ ¬I) −∗ ⊥)) ∗ ls(x′, y)) → ls(x, y)

Figure 7: Proof of the (ALC) entailment in LSSL.

with or without cycles. . .
LSSL rules for acyclic list segments are depicted in Figure 6. Most of the rules are

self explanatory and explained in full details in [14]. Since the ls predicate represents
acyclic singly-linked list segments in LSSL, a proof of the (ALC) entailment discussed
in Section 2.4 is given in Figure 7. As one can notice, the proof requires the LS8

rule, which is the most complicated of the eight list rules. It also requires the cut=

rule, which cannot be eliminated from the proof-system in the presence of inductive
predicates. Let us finally remark that LSSL cannot prove the (LC) entailment, which
is not valid for acyclic singly-linked list-segments, as it would otherwise imply the
unsoundness of the system.

15

High-Level Properties ANR DynRes

7 High-Level Properties in DynRes

As seen in the previous sections, proof-search in full SL, even without inductive predi-
cates and Presburger arithmetic, is far from easy, error prone and requires deep under-
standing of the subtle interactions between the points-to predicate, heap composition
and heap extension.

In the context of Task 1.3 of the ANR project DynRes we took Galmiche & Mery’s
tableau system as a starting point to develop a labelled sequent-style proof-system
called GMSL which, like LSSL and unlike CyclistSL, supports the full set of SL con-
nectives and which, unlike LSSL and like CyclistSL, has support for arbitrary defined
inductive predicates. GMSL currently is final stage work in progress that needs some
polishing and should be ready for submission by the end of the year. A midterm per-
spective is the implementation of the GMSL system as an automated theorem prover
in order to make comparisons with Separata+ and Cyclist.

The decision to restart from a sequent-style reformulation of the tableau system TSL,
though it has no support for inductive predicates, was motivated by three observations:

• firstly, previous work already sketched how to extend TSL to full SL [12], though
various black-corners and completeness issues (but no soundess issues as in Lee
& Park’s PSL) were left unexplained or simply not fully understood back then;

• secondly, though Brotherston’s notions of inductive rule sets and cyclic proofs
really were interesting (and were indeed adapted to GMSL), CyclistSL addresses
only a very small fragment of SL and extending it to full SL would require a
label-free sequent proof-system for BBI, which does not currently exist4;

• thirdly, Hou & al’s LSSL approach of defining specialised sets of rules for each
inductive predicate appeared to us as having scalability issues.

7.1 Buds and Companions in GMSL

In this section, we first adapt the notion of cyclic proofs discussed in Section 5 in the
context of a labelled sequent system.

Let us first take a careful look at the proof-rules of CyclistSL given in Figure 1. We
observe that in the absence of the additive conjunction ∧, the left- and right-hand sides
of CyclistSL sequents can only be constructed (or decomposed) using the multiplicative
conjunction ∗. Moreover, the production rule for the inductive case of the ls predicate
states that if we assume the existence of an already (inductively) constructed list
segment ls(z, y), then combining it with a predicate x 7→ z using the mutiplicative
conjunction ∗ results in a list segment ls(x, y). Now, let h1 and h2 be heaps such that
(s, h1) |= x 7→ z and (s, h2) |= ls(z, y) for some stack s. By the semantics of 7→, we
know that h1 has to be a singleton heap, i.e., a heap of size |h1| = 1. Therefore, the
heap h0 such that (s, h0) |= ls(x, y) necessarily has a size strictly greater than the size
of the heap h2 such that (s, h2) |= ls(z, y). Indeed, by the semantics of ∗5, we know

4 Applications to SL given in [4] do not work because of the confusion between BI and BBI.
5 Let us note here that using ∧ instead of ∗ would not work at all.

16

High-Level Properties ANR DynRes

that h0 = h1 · h2 and thus |h0| = 1 + |h2|, which implies |h2| < |h0|. Therefore, when
unfolding a list segment predicate using its left-unfolding rule lsL, we know for sure that
the list segment ls(z, y) occurring in the premiss corresponding to the inductive case
has a size strictly lower than the list segment ls(x, y) occurring in the conclusion. In
other words, the induction principle behind the inductive premiss of the left-unfolding
rule is in fact nothing more than well-founded induction on the size of the heaps in
disguise. In a labelled proof-system where labels denote heaps, as it is the case for TSL,
LSSL or GMSL, we can explicitly state conditions on the (strictly decreasing) size of
the heaps rather than implicitly relying on the semantics of ∗ and 7→ to do so. Adding
the additive conjunction ∧ is therefore not a big problem for such labelled systems.

Let us now take a look at the global trace condition that validates a pre-proof as a
proper cyclic proof. The condition requires that every path from a companion to bud
in a pre-proof should contain at least one progress point, i.e., at least one application
of the left-unfolding rule of the inductive predicate that follows the path. Cycling from
a companion to a bud shall then necessarily contain infinitely many progress points.
Indeed, in order to have a valid proof by induction of a property P , it is not enough to
show P in the inductive case using a suitable induction hypothesis, it is also required
to show P in at least one trivial (minimal) case. This is precisely what the global trace
condition requires since the left-unfolding rule of an inductive predicate is the only rule
that split the analysis between the trivial and the inductive cases. For the ls predicate,
there is exactly one trivial case and one inductive case. Both cases are respectively
analysed in the left and right premiss of the lsL case-split rule. The left premiss solves
the trivial case and, as we discussed in the previous paragraph, the right premiss is
a well-founded induction that solves a subproblem of the same nature as the problem
represented in the conclusion.

All of the notions illustrated in Section 5 for CyclistSL remain the same in GMSL

except for the notions of bud and companion in a pre-proof. In GMSL, the relationship
between a bud B and its companion C in a pre-proof is generalised so that B should
contain a subproblem of the same nature as C. More precisely, there exist a label
substitution σ and an expression substitution θ such that Cθσ ⊆ B and the label h
associated with the inductive predicate P (x) on which the induction applies in C has
a size strictly greater than the size of the label hσ associated to P (xθ) in B.

7.2 GMSL Core System

The core of the GMSL proof-system is obtained by keeping only the logical, structural
and pointer rules of LSSL

6 and adding the rules depicted in Figure 8. The rules for
negation are given for convenience and easily derivable. The structural rule IU captures
the fact that the empty heap is an indivisible unit for heap composition in SL. The
pointer rule 7→L6

states that there is only one way to split a heap h0 having the
address e1 in its domain so that the first component of the splitting is the singleton
heap the domain of which is e1. The pointer rule 7→L7

is a form of cross-split that

6 Without the rules for data stuctures such as lists or tree, there is very little difference between LSSL

and TSL and the translation between the two systems is straightforward.

17

High-Level Properties ANR DynRes

Identity and cut:

ida

G; Γ ; h : A ⊢ h : A; ∆

G; Γ ⊢ h : A; ∆ G; Γ ; h : A ⊢ ∆
cuta

G; Γ ⊢ ∆

Logical rules:

G; Γ ⊢ h : ⊥; ∆
⊥R

G; Γ ⊢ ∆

G; Γ ; h : ⊤ ⊢ ∆
⊤L

G; Γ ⊢ ∆

G; Γ ⊢ h : A; ∆
¬L

G; Γ ; h : ¬A ⊢ ∆

G; Γ ; h : A ⊢ ∆
¬R

G; Γ ⊢ h : ¬A; ∆

G; Γ ; h′ : e1 = e2 ⊢ ∆
2
=L

G; Γ ; h : e1 = e2 ⊢ ∆

G; Γ ⊢ h′ : e1 = e2; ∆
2
=R

G; Γ ⊢ h : e1 = e2; ∆

Structural rules:

G[ǫ/h1, ǫ/h2]; Γ [ǫ/h1, ǫ/h2] ⊢ ∆[ǫ/h1, ǫ/h2]
IU

(h1, h2 ⊲ ǫ); G; Γ ⊢ ∆

Pointer rules:

(h1, h2 ⊲ h0); G; Γ θ[h1/h3, h2/h4]; h1 : e1θ 7→ e2θ ⊢ ∆θ[h1/h3, h2/h4]
7→L6

(h1, h2 ⊲ h0); (h3, h4 ⊲ h0); G; Γ ; h1 : e1 7→ e2; h3 : e1 7→ e3 ⊢ ∆

(h1, h5 ⊲ h4); (h3, h5 ⊲ h2);
(h1, h2 ⊲ h0); (h3, h4 ⊲ h0); G; Γ ; h1 : e1 7→ e2; h3 : e3 7→ e4 ⊢ h : e1 = e3; ∆

7→L7

(h1, h2 ⊲ h0); (h3, h4 ⊲ h0); G; Γ ; h1 : e1 7→ e2; h3 : e3 7→ e4 ⊢ h : e1 = e3; ∆

Side conditions:

Each label being substituted cannot be ǫ, each expression being substituted cannot be nil.
In 7→L6

, θ = mgu({e2, e3}).

Figure 8: GMSL additional proof rules. Double-lines indicate proof-rules with inter-
changeable premiss and conclusion.

18

High-Level Properties ANR DynRes

G; Γ ; h : e1 = e2 ⊢ h : I; ∆
ℓ̄sR1

G; Γ ⊢ h : ℓ̄s(e1, e2); ∆

G; Γ ⊢ h : ∃u.e1 7→ u ∗ ℓ̄s(u, e2); ∆
ℓ̄sR2

G; Γ ⊢ h : ℓ̄s(e1, e2); ∆

G; Γ ; h : e1 = e2; h : I ⊢ ∆ G; Γ ; h : ∃u.e1 7→ u ∗ ℓ̄s(u, e2) ⊢ ∆
ℓ̄sL

G; Γ ; h : ℓ̄s(e1, e2) ⊢ ∆

Figure 9: GMSL rules for arbitrary list segments.

captures the fact that whevener a heap h0 admits a first splitting h0 = h1 · h2 with h1

being the singleton heap e1 7→ e2 and a second splitting h0 = h3 · h4 with h3 being the
singleton heap e3 7→ e4 then, provided that e1 is not the same address as e3, h0 has at
least the two distinct addresses e1 and e3 in its domain and can thus be rearranged so
that h0 = h1 · h3 · h5 for some (possibly empty) heap h5, from which it follows that
h2 = h3 · h5 and h4 = h1 · h5.

7.3 From Production to Sequent Rules

Beyond the core, let us explain how GMSL allows the definition of arbitrary inductive
predicates using the notions of inductive rules sets and production rules as presented
in Section 5 for CyclistSL. Since GMSL is able to deal with either arbitrary, or acyclic
list segments, from now on and to avoid confusion, we write ℓ̄s to denote arbitrary list
segments7 and keep writing ls to denote acyclic list segments.

Given a production rule F
x

⇒ P (x), let F be its body and P (x) be its head. Given a

finite set of production rules Fi

x

⇒ P (xi) for a predicate symbol P , the first step is to
rewrite all rules so that they share the same head P (y), where the tuple y contains only
distinct variables, using equalities when necessary. After this step we get production

rules of the form { Ei } ; Fi

z

⇒ P (y), where { Ei } is a possibly empty set and Ei

(when it exists) is an additive conjunction of equalities8. Let us call its guard the Ei

part of a production rule.
For the ℓ̄s predicate, the initial production rules

I
x

⇒ ℓ̄s(x, x) x 7→ z ∗ ℓ̄s(z, y)
x,y,z

⇒ ℓ̄s(x, y)

get rewritten as follows

{ x = y } ; I
x,y

⇒ ℓ̄s(x, y) ∅ ; x 7→ z ∗ ℓ̄s(z, y)
x,y,z

⇒ ℓ̄s(x, y)

The second step is to bind to an existential quantifier all the free variables of the
production rule that occur in its body but not in its head, thus removing these variables
from its set of free variables. After this step, we obtain canonical production rules,

which are production rules of the form { Ei } ; QFi

z−u

⇒ P (y), where u is the tuple

7 The cursive ℓ reminding us that such list segments might have cycles.
8 Also moving into Ei all equalities (and inequalities) occurring in the body of the production rule.

19

High-Level Properties ANR DynRes

containing all the free variables that occur in Fi but not in y, the formula QFi being
defined as follows:

QFi
def
=

{

Fi if u is empty
∃u. Fi otherwise

For the ℓ̄s predicate, this binding step yields

{ x = y } ; I
x,y

⇒ ℓ̄s(x, y) ∅ ; ∃u. x 7→ u ∗ ℓ̄s(u, y)
x,y

⇒ ℓ̄s(x, y)

As in Brotherston’s approach, the next step is to define left- and right-unfolding

rules, but in a labelled context. Each production rule { Ei } ; QFi

z−u

⇒ P (y) gives rise
to a right-unfolding rule and to one premiss (using the left-hand-side of the production
rule) of the single multi-premiss left-unfolding rule as follows:

G; Γ ; h : Ei ⊢ h : QFi; ∆
PRi

G; Γ ⊢ h : P (y); ∆

G; Γ ; h : E1; h : QF1 ⊢ ∆ . . . G; Γ ; h : En; h : QFn ⊢ ∆
PL

G; Γ ; h : P (y) ⊢ ∆

For the ℓ̄s predicate, this step yields the following proof-rules:

G; Γ ; h : x = y ⊢ h : I; ∆
ℓ̄sR1

G; Γ ⊢ h : ℓ̄s(x, y); ∆

G; Γ ⊢ h : ∃u.x 7→ u ∗ ℓ̄s(u, y); ∆
ℓ̄sR2

G; Γ ⊢ h : ℓ̄s(x, y); ∆

G; Γ ; h : x = y; h : I ⊢ ∆ G; Γ ; h : ∃u.x 7→ u ∗ ℓ̄s(u, y) ⊢ ∆
ℓ̄sL

G; Γ ; h : ℓ̄s(x, y) ⊢ ∆

Generalizing from variables to expressions, we finally obtain the proof-rules depicted
in Figure 9 for the arbitratry singly-linked list segments.

Let us remark that if the initial production rules of an inductive predicate contain
inequalities in their bodies, then the previous procedure sometimes requires a special
“merging” final step that we shall discuss later in Section 7.5 to retain soundness.

7.4 Case Study: List Concatenation

Figure 10 gives a cyclic proof of the (LC) entailment in GMSL which follows the
same pattern as the one given in Figure 2 for CyclistSL. As explained in Section 2.4,
the (LC) entailment is valid in Reynold’s semantics for arbitrary list segments but
not for acyclic list segments. The bud B and companion C of this cyclic proof are
indicated by the (†) marks and respectively take the following forms:

B
def
= (h4, h2 ⊲ h5); GB; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y); ΓB ⊢ h5 : ℓ̄s(u, y)

C
def
= (h1, h2 ⊲ h0); h1 : ℓ̄s(x, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : ℓ̄s(x, y)

20

High-Level Properties ANR DynRes

ida

(ǫ, h2 ⊲ h0); h2 : ℓ̄s(x, y) ⊢ h2 : ℓ̄s(x, y)
Eq2

(ǫ, h2 ⊲ h0); h2 : ℓ̄s(x, y) ⊢ h0 : ℓ̄s(x, y)
IL

(h1, h2 ⊲ h0); h1 : I; h2 : ℓ̄s(x, y) ⊢ h0 : ℓ̄s(x, y)
=L

(h1, h2 ⊲ h0); h1 : I; h2 : ℓ̄s(x′, y) ⊢ h0 : ℓ̄s(x, y)

Π1

ida

(h3, h5 ⊲ h0); (h2, h4 ⊲ h5);
(h3, h4 ⊲ h1); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h3 : x 7→ u

Π2

Π1

Π2

(†)

(h3, h5 ⊲ h0); (h4, h2 ⊲ h5);
(h3, h4 ⊲ h1); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h5 : ℓ̄s(u, y)

E
(h3, h5 ⊲ h0); (h2, h4 ⊲ h5);
(h3, h4 ⊲ h1); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h5 : ℓ̄s(u, y)

∗R

(h3, h5 ⊲ h0); (h2, h4 ⊲ h5);
(h3, h4 ⊲ h1); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : x 7→ u ∗ ℓ̄s(u, y)

A
(h3, h4 ⊲ h1); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : x 7→ u ∗ ℓ̄s(u, y)

∃R

(h3, h4 ⊲ h1); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : ∃u.x 7→ u ∗ ℓ̄s(u, y)

ℓ̄sR2

(h3, h4 ⊲ h1); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : ℓ̄s(x, y)

∗L

(h1, h2 ⊲ h0); h1 : x 7→ u ∗ ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : ℓ̄s(x, y)

∃L

(h1, h2 ⊲ h0); h1 : ∃u.x 7→ u ∗ ℓ̄s(u, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : ℓ̄s(x, y)

ℓ̄sL

(†) (h1, h2 ⊲ h0); h1 : ℓ̄s(x, x′); h2 : ℓ̄s(x′, y) ⊢ h0 : ℓ̄s(x, y)
∗L

h0 : ℓ̄s(x, x′) ∗ ℓ̄s(x′, y) ⊢ h0 : ℓ̄s(x, y)
→R

⊢ h0 : (ℓ̄s(x, x′) ∗ ℓ̄s(x′, y)) → ℓ̄s(x, y)

Figure 10: Cyclic proof of (ℓ̄s(x, x′) ∗ ℓ̄s(x′, y)) → ℓ̄s(x, y) in GMSL.

21

High-Level Properties ANR DynRes

It appears that Cθσ ⊆ B with σ = [h4/h1, h5/h0] and θ = [x 7→ u]. On one hand,
since GB contains (h3, h4 ⊲ h1), the fact that ΓB contains h3 : x 7→ u implies that
|h1| = |h4| + 1 and thus |h4| < |h1|. It then follows from (h4, h2 ⊲ h5) and (h1, h2 ⊲ h0)
that |h5| < |h0|. On the other hand, h4, h2 and h5 are in the same kind of relationship
in B as h1, h2 and h0 were in C, more precisely, the heap that represents the list
segment on which the induction applies combined with the heap that represents the
second list segment results in the heap that represents the concatenation of the two list
segments. Therefore, the bud actually contains a subproblem of the same nature as the
problem represented by its companion. Furthermore, the underlined ℓ̄s predicates form
a trace following the infinite path (cycle) from C to B and this trace has infinitely
many progress points since the rule ℓ̄sL is applied right after the companion, which
finally leads to the conclusion that the derivation presented in Figure 10 actually is a
cyclic proof in GMSL.

7.5 Taming Acyclic List Segments

The initial production rules for the ls predicate that represents acyclic singly-linked
list segments are the following:

I
x

⇒ ls(x, x) x 6= y ∧ (x 7→ z ∗ ls(z, y))
x,y,z

⇒ ls(x, y)

where x 6= y is syntactic sugar for ¬(x = y). Applying the first two steps of the
procedure described in Section 7.3 we get the following canonical rules C1 and C2:

{ x = y } ; I
x,y

⇒ ls(x, y) { x 6= y } ; ∃u. x 7→ u ∗ ls(u, y)
x,y

⇒ ls(x, y)

which, after we apply the ¬L rule to get rid of the ¬ connective, leads to the following
left- and right-unfolding rules:

G; Γ ; h : x = y ⊢ h : I; ∆
lsR1

G; Γ ⊢ h : ls(x, y); ∆

G; Γ ⊢ h : x = y; h : ∃u.x 7→ u ∗ ls(u, y); ∆
lsR2

G; Γ ⊢ h : ls(x, y); ∆

G; Γ ; h : x = y; h : I ⊢ ∆ G; Γ ; h : ∃u.x 7→ u ∗ ls(u, y) ⊢ h : x = y; ∆
lsL

G; Γ ; h : ls(x, y) ⊢ ∆

However adding those rules to GMSL would lead to unsoundess as we could then prove
⊢ h0 : ls(nil, nil) for all heaps h0 and not just for empty heaps as shown below:

=R

⊢ h0 : nil = nil; h0 : ∃u.nil 7→ u ∗ ls(u, nil)
lsR2

⊢ h0 : ls(nil, nil)

The unsoundness comes from the fact that the inequality x 6= y can sometimes be
absurd, as it is the case for nil. The presence of x = y and x 6= y in the respective
guards of the canonical rules C1 and C2 entails that, as opposed to what happens
with ℓ̄s, the only way to produce ls(z, z) is by using C1 and the only way to produce

22

High-Level Properties ANR DynRes

G; Γ ; h : e1 = e2 ⊢ h : I; ∆ G; Γ ⊢ h : ∃u.e1 7→ u ∗ ls(u, e2); h : e1 = e2; ∆
lsR

G; Γ ⊢ h : ls(e1, e2); ∆

G; Γ ; h : e1 = e2; h : I ⊢ ∆ G; Γ ; h : ∃u.e1 7→ u ∗ ls(u, e2) ⊢ h : e1 = e2; ∆
lsL

G; Γ ; h : ls(e1, e2) ⊢ ∆

Figure 11: GMSL rules for acyclic list segments.

ls(x, y) when s(x) 6= s(y) for some stack s is by using C2. Therefore, to falsify ls(x, y)
one needs to make sure that, depending on the status of the equality x = y, neither C1,
nor C2 can produce ls(x, y). This is achieved by merging the two rules lsR1

and lsR2

into a single right-unfolding rule lsR with two premises as shown below:

G; Γ ; h : x = y ⊢ h : I; ∆ G; Γ ⊢ h : ∃u.x 7→ u ∗ ls(u, y); h : x = y; ∆
lsR

G; Γ ⊢ h : ls(x, y); ∆

Generalizing from variables to expressions we get the proof-rules of Figure 11.
For simplicity, we used the example of ls which is a binary predicate with two

canonical rules in order to explain the final step that merges the two right-unfolding
rules of a binary predicate as soon as the corresponding canonical rules respectively
contain an equality and its negation. This merging step easily generalises to binary
predicates with more than two canonical rules. It also generalises to n-any predicates
with a finite number of canonical rules (though less easily and with a handful of big
and cumbersome conjunctions and disjunctions of equalities and inequalities).

7.6 Case Study: Acyclic List Extension

Let us consider the following entailment which states that if a heap represents a list
segment ending with y, then y is not an address occurring in the heap and cannot
point anywhere (i.e., y is dangling):

(ALE)
def
= ls(x, y) |= ¬(y 7→ z ∗ ⊤)

(ALE) is valid in Reynold’s semantics if and only if for all states (s, h):

(s, h) |= ls(x, y) implies (s, h) 6|= y 7→ z ∗ ⊤

(ALE) is obviously not valid for arbitrary list segments since a panhandle list needs
to have y pointing back somewhere in the list. However, (ALE) is valid for acyclic list
segments as shown by the following proof by induction on the size |h| of the heap h.

1. Trivial case: |h| = 0

We simply show that (s, h) 6|= y 7→ z ∗ ⊤.
Let us suppose that (s, h) |= y 7→ z ∗ ⊤. Then, there are wo heaps h1 and h2

23

High-Level Properties ANR DynRes

such that h1#h2, h = h1 · h2, (s, h1) |= y 7→ z and (s, h2) |= ⊤. Therefore
|h| = 1 + |h2|, which implies |h| > 0, a contradiction to the assumption that
|h| = 0 in the trivial case. Consequently, (s, h) 6|= y 7→ z ∗ ⊤.

2. Inductive case: |h| = n with n > 0

We use the following induction hypothesis:

∀h. ∀x, y, z. if |h| < n then (s, h) |= ls(x, y) implies (s, h) 6|= y 7→ z ∗ ⊤

Let us now suppose that (s, h) |= ls(x, y). We show that (s, h) |= y 7→ z ∗ ⊤.

Since |h| > 0 implies (s, h) 6|= I, by definition of ls, (s, h) |= ls(x, y) implies:

(s, h) |= x 6= y ∧ ∃u. x 7→ u ∗ ls(u, y)
⇔ (s, h) |= x 6= y and (s, h) |= ∃u. x 7→ u ∗ ls(u, y)
⇔ (s, h) |= x 6= y and (s[u 7→ v], h) |= x 7→ u ∗ ls(u, y)
⇔ (s, h) |= x 6= y and ∃h1, h2. h1#h2, h = h1 ·h2, (s[u 7→ v], h1) |= x 7→u,

and (s[u 7→ v], h2) |= ls(u, y)

From (s[u 7→ v], h1) |= x 7→ u, we obtain |h1| = 1. From h = h1 · h2, we obtain
|h| = |h1| + |h2| = 1 + |h2|, and thus |h2| < h. From (s[u 7→ v], h2) |= ls(u, y),
by induction hypothesis, we obtain (s[u 7→ v], h2) 6|= y 7→ z ∗ ⊤.
From (s[u 7→ v], h2) 6|= y 7→ z ∗ ⊤, we obtain (s, h2) 6|= y 7→ z ∗ ⊤. Therefore, since
h = h1 ·h2, the only way to have (s, h) |= y 7→z ∗⊤ would be that (s, h1) |= y 7→z,
which cannot be the case because

• (s, h) |= x 6= y implies s(x) 6= s(y) and

• (s[u 7→ v], h1) |= x 7→ u implies that s(x) is the only address in the domain
of the heap h1.

We can then conclude that (s, h) 6|= y 7→ z ∗ ⊤.

A cyclic proof of (ALE) in GMSL is given in Figure 12. The bud B and companion C
of this cyclic proof are indicated by the (†) marks and respectively take the forms:

B
def
= (h1, h5 ⊲ h4); GB; h4 : ls(u, y); h1 : y 7→ z; ΓB ⊢

C
def
= (h1, h2 ⊲ h0); h0 : ls(x, y); h1 : y 7→ z ⊢

It is clear that Cθσ ⊆ B with σ = [h5/h2, h4/h0] and θ = [x 7→ u]. On one hand,
since GB contains (h3, h5 ⊲ h2), the fact that ΓB contains h3 : x 7→ u implies that
|h5| < |h2|. It then follows from (h1, h2 ⊲ h0) and (h1, h5 ⊲ h4) that |h4| < |h0|.
Therefore, the bud actually contains a subproblem of the companion. On the other
hand, the subproblem is also of the same nature as the problem represented by the
companion because h1, h5 and h4 in B are in the same kind of relationship as h1,
h2 and h0 were in C, more precisely, the heap that represents the list segment on
which the induction applies is the result of the combination of a heap that forces the
extension y 7→ z of that list segment with a heap that forces ⊤. Furthermore, the

24

High-Level Properties ANR DynRes

7→L1

ǫ : x = y; ǫ : y 7→ z ⊢
IU

(h1, h2 ⊲ ǫ);
ǫ : x = y; h1 : y 7→ z ⊢

IL

(h1, h2 ⊲ h0); h0 : I;
h0 : x = y; h1 : y 7→ z ⊢

(†)

(h1, h5 ⊲ h4); (h3, h5 ⊲ h2);
(h3, h4 ⊲ h0); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ls(u, y); h1 : y 7→ z ⊢ h0 : x = y

7→L7

(h3, h4 ⊲ h0); (h1, h2 ⊲ h0);
h3 : x 7→ u; h4 : ls(u, y); h1 : y 7→ z ⊢ h0 : x = y

∗L

(h1, h2 ⊲ h0); h0 : x 7→ u ∗ ls(u, y); h1 : y 7→ z ⊢ h0 : x = y

∃L

(h1, h2 ⊲ h0); h0 : ∃u.x 7→ u ∗ ls(u, y); h1 : y 7→ z ⊢ h0 : x = y

lsL

(†) (h1, h2 ⊲ h0); h0 : ls(x, y); h1 : y 7→ z ⊢

⊤L

(h1, h2 ⊲ h0); h0 : ls(x, y); h1 : y 7→ z; h2 : ⊤ ⊢
∗L

h0 : ls(x, y); h0 : (y 7→ z ∗ ⊤) ⊢
¬R

h0 : ls(x, y) ⊢ h0 : ¬(y 7→ z ∗ ⊤)
→R

⊢ h0 : ls(x, y) → ¬(y 7→ z ∗ ⊤)

Figure 12: Cyclic proof of (ls(x, y) → ¬(y 7→ z ∗ ⊤)) in GMSL.

underlined ls predicates form a trace following the infinite path (cycle) from C to B.
This trace has infinitely many progress points as the rule lsL is applied right after
the companion, which finally leads to the conclusion that the derivation presented in
Figure 12 actually is a cyclic proof in GMSL.

Let us firstly remark that (ALE) cannot be proved in GMSL for arbitrary list seg-
ments9 since the left-unfolding rule for arbitrary list segments would not introduce
h0 : x = y on the right-hand-side of its second premiss, which would in turn prevent
the final application of the 7→L7

rule in the second branch of the derivation in Figure 12.
Let us secondly remark that we can prove that all LSSL rules for acyclic list segments
given in Figure 6 are derivable in GMSL

10, which entails that GMSL has strictly more
proving power than LSSL since we have seen in Section 7.4 that LSSL cannot prove
the (LC) entailment as it has no rules for arbitrary singly-linked list segments.

9 Unsoundness of GMSL would otherwise immediately follow since (ALE) is not valid for arbitrary
list segments.

10 In the presence of the cuta rule though.

25

High-Level Properties ANR DynRes

References

[1] J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular automatic asser-
tion checking with separation logic. In 4th Int. Symposium on Formal Methods for

Components and Objects, FMCO’2005, LNCS 4111, pages 115–137, Amsterdam,
Netherlands, 2005.

[2] J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with separa-
tion logic. In 3rd Asian Symposium on Programming Languages and Systems,

APLAS’2005, LNCS 3780, pages 52–68, Tsukuba, Japan, 2005.

[3] R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. In Information

and Computation 211:106–137, 2012.

[4] J. Brotherston. Formalised inductive reasoning in the logic of bunched impli-
cations. In 14th Symposium on Static Analysis, SAS’2007, LNCS 4634, pages
87–103, Kongens Lyngby, Denmark, 2007.

[5] J. Brotherston, D. Distefano, and R.L. Petersen. Automatic cyclic entailment
proofs in separation logic. In 23rd Int. Conference on Automated Deduction,

CADE’2011, LNCS 6803, pages 131–146, Wroclaw, Poland, 2011.

[6] J. Brotherston and M. Kanovich. Undecidability of propositional separation logic
and its neighbour. In IEEE Symposium on Logic in Computer Science, LICS’2010,
pages 130–139, Edinburgh, Scotland, 2010.

[7] C. Calcagno, H. Yang, and P.W. O’Hearn. Computability and complexity re-
sults for a spatial assertion language for data structures. In 20th Int. Confer-

ence on Foundations of Software Technology and Theoretical Computer Science,

FSTTCS’2001, LNCS 2245, pages 108–119, Bangalore, India, 2001.

[8] C. Calcagno and M. Hague. From separation logic to first-order logic. In 8th Int.

Conference on Foundations of Software Science and Computational Structures,

FoSSaCS’05, pages 395–409, Edinburgh, Scotland, 2005.

[9] S. Demri, D.Galmiche, D. Larchey-Wendling and D. Méry. Separation logic with
one quantified variable. In 9th Int. Symposium on Computer Science in Russia,

CSR’2014, pages 125–138, Moscow, Russia, 2014.

[10] S. Demri and M. Deters. Two-Variable Separation Logic and Its Inner Circle.
ACM Transaction on Computational Logic, 16(2):15, 2015.

[11] D. Galmiche and D. Méry. Semantic labelled tableaux for propositional BI without
bottom. Journal of Logic and Computation, 13(5):707–753, 2003.

[12] D. Galmiche and D. Méry. Tableaux and resource graphs for separation logic.
Journal of Logic and Computation, 20(1):189–231, 2007.

26

High-Level Properties ANR DynRes

[13] Z. Hou, A. Tiu, and R. Gore. A labelled sequent calculus for BBI: Proof theory
and proof search. In 22th Int. Conference on Automated Reasoning with Analytic

Tableaux and Related Methods, TABLEAUX’2013, pages 172–187, Nancy, France,
2013.

[14] Z. Hou, R. Gore, and A. Tiu. Automated theorem proving for assertions in separa-
tion logic with all connectives. In 25th Int. Conference on Automated Deduction,

CADE’2015, to appear, Berlin, Germany, 2015.

[15] S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data
structures. In 28th ACM Symposium on Principles of Programming Languages,

POPL’2001, pages 14–26, London, UK, 2001.

[16] D. Larchey-Wendling and D. Galmiche. The undecidability of boolean BI through
phase semantics. In IEEE Symposium on Logic in Computer Science, LICS’2010,
pages 140–149, Edinburgh, Scotland, 2010.

[17] W. Lee and S. Park. A proof system for separation logic with magic wand. In 41st

ACM Symposium on Principles of Programming Languages, POPL’2014, pages
477–490, New York, USA, 2014.

[18] P.W. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of

Symbolic Logic, 5(2):215–244, 1999.

[19] P.W. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that al-
ter data structures. In 15th Int. Workshop on Computer Science Logic, CSL’2001,
LNCS 2142, pages 1–19, Paris, France, 2001.

[20] J. Reynolds. Separation logic: A logic for shared mutable data structures. In IEEE

Symposium on Logic in Computer Science, LICS’2002, pages 55–74, Copenhagen,
Denmark, 2002.

27

