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Abstract. In this paper, we show that the formulæ of Boolean BI cannot
distinguish between some of the different notions of separation algebra
found in the literature: partial commutative monoids, either cancellative
or not, with a single unit or not, all define the same notion of validity.
We obtain this result by the careful study of the specific properties of the
counter-models that are generated by tableaux proof-search in Boolean BI.

1 Introduction

Separation logic [18] is a well established logical formalism for reasoning about
heaps of memory and programs that manipulate them. The purely proposi-
tional part of the logic is usually given by Boolean BI (also denoted BBI) which
is a particular bunched logic obtained by freely combining the Boolean connec-
tives of classical propositional logic with those of multiplicative intuitionistic
linear logic [11]. Provability in BBI is defined by a Hilbert system [17] and cor-
responds to validity in the class of non-deterministic (or relational) monoids [8].
Restricting that class to e.g. partial monoids gives another notion of validity [14]
for which the Hilbert system is not complete anymore.

Separation logic is defined by a particular kind of partial monoids built for
instance from memory heaps that are composed by disjoint union; see [3,13,15]
for a survey of the different models either abstract or concrete that are usually
considered in the literature. These models verify some additional properties
that may be invalid in non-deterministic models or even in partial monoidal
models. Some of these properties are the foundation of separation algebras [5,6,7].
For instance, the existence of multiple units for the composition of heaps, or the
property that the composition of heaps is a cancellative operation, the main focus
of this paper. This last property does not hold in an arbitrary partial monoid.

Let us discuss some motivations behind the study of these specific proper-
ties of separation algebras. Abstract separation logics and variants of BBI are
usually undecidable [3,2,14,15]. But still, being able to prove statements ex-
pressed in BBI is required in the framework of Hoare logic. Hence the idea is
to try narrowing down the logic and the separation model through the logical
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or proof-theoretical representations of the specific properties of separation al-
gebras. We notice the lively interest in proof-search for relational BBI [1,10,16],
partial monoidal BBI [12,13] and propositional abstract separation logic [9].

In [4], Brotherston and Villard show that cancellativity cannot be axiom-
atized within BBI: no formula of BBI is able to distinguish cancellative from
non-cancellative monoids. Let us note that even though an axiomatization is
proposed in some hybrid extension of BBI [4], proof-search in such extensions
of BBI is a largely unexplored track of research. In the current paper, we show
the stronger result that any BBI formula that is valid in partial and cancellative
models is also valid in any partial model: validity of BBI formulæ is the very
same predicate if you add cancellativity as a requirement for your models.

In [9], Hóu et al. present a labelled sequent calculus for proof-search in propo-
sitional abstract separation logic extending their work on relational BBI [10] by in-
troducing model specific proof-rules, in particular one for partiality and one for
cancellativity. A noticeable consequence of our result is that their rule for can-
cellativity is redundant when searching for proofs of BBI-formulæ: one may
find shorter proofs using that rule but it does not reinforce provability. As an-
other consequence, extending the older labelled tableaux calculus for partial
monoidal BBI of Larchey-Wendling and Galmiche [13] to cover cancellativity
is trivial: simply do nothing. The difficulty does not lie in the extension of the
system but in the proof of the redundancy of cancellativity.

The results obtained in this paper emphasize the importance of the strong
completeness theorem for partial monoidal BBI [12] from which they derive. The
counter-models generated by the labelled tableaux proof-search calculus con-
tain information about the logic itself that, when carefully extracted, can be
used to obtain completeness for additional properties of abstract models.

Let us give an overview of the paper. In Section 2, we recall the syntax and
Kripke semantics of Boolean BI and we present non-deterministic monoids which
are the models of BBI, and some sub-classes of monoids related to separation
algebras and abstract separation logic models, e.g. cancellative monoids. In Sec-
tion 3, we study the links between single unit and multi-unit monoids and give a
quick semantic overview of why they are equivalent w.r.t. BBI validity. In Sec-
tion 4, we define the notion of partial monoidal equivalence (or PME for short) to
syntactically represent partial monoids with a single unit. We define basic and
simple PMEs which are the monoids that are generated by labelled tableaux
proof-search [12]. In Section 5, we use the strong completeness result for sim-
ple PMEs to derive an equivalence theorem for some separation algebras. It
is based on our core result: basic/simple PMEs are cancellative and have invertible
squares. We discuss the proof of this result in the following sections. In Section 6,
we introduce the notion of invertibility in the context of PMEs. In Section 7, we
argue that even though basic PMEs are defined inductively, it is not possible to
give a direct inductive proof of cancellativity or of the invertibility of squares
for basic PMEs. In Section 8, we show that basic PMEs can be transformed into
primary PMEs and that primary PMEs are cancellative with invertible squares.
Omitted proofs can be found in the appendices.



2 Boolean BI and its non-deterministic Kripke semantics

In this section, we introduce a “compact” syntax for BBI: conjunction ∧ and
negation ¬ are the only Boolean connectives.3 Then, we present the Kripke se-
mantics of BBI based on the notion of non-deterministic monoid.

Definition 1. The formulæ of BBI are freely built using logical variables in Var, the
logical constant I, the unary connective ¬ or binary connectives in {∗,−∗,∧}. The
formal grammar is F ::= v | I | ¬F | F ∧ F | F ∗ F | F −∗ F with v ∈ Var.

We introduce the semantic foundations of BBI. Let us consider a set M .4 We
denote by P(M) the power-set of M , i.e. its set of subsets. A binary function
◦ : M ×M −→ P(M) is naturally extended to a binary operator on P(M) by
X◦Y =

⋃
{x◦y | x ∈ X, y ∈ Y } for any subsetsX,Y ofM . Using this extension,

we can view an element m of M as the singleton set {m} and derive equations
like m ◦X = {m} ◦X , a ◦ b = {a} ◦ {b} or ∅ ◦X = ∅.

Definition 2. A non-deterministic monoid (ND-monoid for short) is a triple M =
(M, ◦, U) whereU ⊆M is the set of units and ◦ : M×M−→P(M) is a composition
for which the axioms of (neutrality) ∀x ∈M x ◦U = {x}, (commutativity) ∀x, y ∈
M x ◦ y = y ◦ x, and (associativity)5 ∀x, y, z ∈M (x ◦ y) ◦ z = x ◦ (y ◦ z) hold.

The extension of ◦ to P(M) thus induces a (usual) commutative monoidal
structure with unit U onP(M). The term non-deterministic was introduced in [8]
in order to emphasize the fact that the composition a ◦ b may yield not only one
but an arbitrary number of results including the possible incompatibility of a
and b in which case a ◦ b = ∅. Notice that M is called a BBI-model in [4].

Given M = (M, ◦, U) and an interpretation δ : Var −→ P(M) of variables,
we define the Kripke forcing relation by induction on the structure of formulæ:

M, x δ v iff x ∈ δ(v) M, x δ I iff x ∈ U M, x δ ¬A iff M, x 1δ A
M, x δ A ∧B iff M, x δ A and M, x δ B
M, x δ A ∗B iff ∃a, b, x ∈ a ◦ b and M, a δ A and M, b δ B
M, x δ A−∗B iff ∀a, b, (b ∈ x ◦ a and M, a δ A)⇒M, b δ B

Definition 3 (BBI-validity, counter-models). A formulaF of BBI is valid in M =
(M, ◦, U) if for any interpretation δ : Var −→ P(M) the relation M,m δ F holds
for any m ∈ M . A counter-model of the formula F is given by a ND-monoid M, an
interpretation δ : Var −→P(M), and an element m ∈M such that M,m 1δ F .

In some papers, you might find BBI defined by non-deterministic monoidal
Kripke semantics [1,4,8,10], in other papers it is defined by partial determin-
istic monoidal Kripke semantics [12,13] and generally separation logic models
are particular instances of partial (deterministic) monoids [3,4,9]. See [13] for a
general discussion about these issues.

3 The other Boolean connectives can be obtained by De Morgan’s laws.
4 The case M = ∅ is allowed but arguably not very interesting in the case of BBI.
5 Associativity should be understood using the extension of ◦ to P(M).
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Fig. 1. Inclusions between BBI-validity in some sub-classes of ND-monoids.

Definition 4. For any ND-monoid (M, ◦, U), we name some properties as follows:
(PD) Partial deterministic ∀x, y, a, b {x, y} ⊆ a ◦ b⇒ x = y
(SU) Single unit ∃u U = {u}
(CA) Cancellativity ∀k, a, b (k ◦ a) ∩ (k ◦ b) 6= ∅ ⇒ a = b
(IU) Indivisible units ∀x, y x ◦ y ∩ U 6= ∅ ⇒ x ∈ U
(DI) Disjointness ∀x x ◦ x 6= ∅ ⇒ x ∈ U

These properties allow us to consider sub-classes of the full class of ND-
monoids. Other properties like divisibility or cross-split are considered as well
in [4] but in this paper, we focus on the properties of Definition 4.

We denote by ND the full class of non-deterministic monoids. We identify
the property X with the sub-class X ⊆ ND of monoids which satisfy property
X . If X and Y are two properties, we read X+Y as the sub-class of monoids of
ND that satisfy the conjunction of X and Y . This is the meaning of the equation
X + Y = X ∩ Y which might look strange at first. As an example, PD + SU +
CA + IU is both the conjunction of those four properties and the sub-class of
cancellative partial deterministic monoids with a single and indivisible unit.

Proposition 1. The two strict inclusions DI ( IU and PD + DI ( PD + IU hold.

The sub-class HM of heap monoids verifies all the properties of Definition 4.
However, it is not defined by a property but it is described by the concrete
models of Separation Logic [15].

Various notions of separation algebra can be found in the literature: for in-
stance the “original” notion of separation algebra is defined in [5] as the ele-
ments of the sub-class PD + SU + CA; in the “views” framework of [6], a sep-
aration algebra is an element of sub-class PD; while it is of sub-class PD + CA
in [7]. To finish, in [13], though not called separation algebra, a BBI-model is an
element of sub-class PD + SU.

In general the sub-classes of ND define different notions of validity on the
formulæ of BBI [14]. However, it was proved recently that theses properties are
not axiomatizable in BBI [4], with the exception of IU.6 We define a notation to
express the relations between those potentially different notions of validity.

Definition 5 (BBIX ). For any sub-class X ⊆ ND, we denote by BBIX the set of
formulæ of BBI which are valid in any ND-monoid of the sub-class X .

6 In [4], I→ (A ∗B)→A is used as a BBI-axiom for IU but we favor ¬(I ∧ (¬I ∗ ¬I)).



Obviously, if the inclusion X ⊆ Y holds between the sub-classes X and Y
of ND-monoids then inclusion BBIY ⊆ BBIX holds between the sets of valid
formulæ. The sets BBIX are usually not recursive (at least for the sub-classes
we consider here) because of the undecidability of BBI [3,2,14,15]. The identity
BBIX = BBIY implies for instance that a semi-decision algorithm for validity
(of formulæ) in sub-class X can be replaced by some semi-decision algorithm
for validity in sub-class Y . It also “suggests” that there might exist some kind of
relation (like a map [4] or a bisimulation [15]) between the models of sub-class
X and those of sub-class Y .7

To the best of our knowledge, the graph of Figure 1 summarizes what was
known about the inclusion relations between the formulæ valid in the previ-
ously mentioned sub-classes of ND-monoids, the single arrow → represent-
ing strict inclusion, the double arrow ⇒ representing non-strict inclusion. In
fact, besides trivial inclusion results derived from the obvious inclusions of
sub-classes of monoids, not very much was known except the strict inclusion
BBIND ( BBIPD proved8 in [14] and the strict inclusions BBIND ( BBIIU and
BBIPD ( BBIPD+IU which are trivial consequences of the stronger result that IU
can be axiomatized in BBI. Beware that PD cannot be axiomatized in BBI [4].

The left gray box in Figure 1 is the main motivation behind the current pa-
per. It contains the four different definitions of separation algebras mentioned
earlier: PD, PD + SU, PD + CA and PD + SU + CA. In this paper, we show that
these four sub-classes of ND-monoids define the same set of valid formulæ, i.e.
the double arrows are in fact identities. To obtain these results, we first give a
simple proof that BBIPD+SU ⊆ BBIPD in Section 3, and then a much more in-
volved proof that BBIPD+SU+CA ⊆ BBIPD+SU in the latest sections of the paper.
This proof is based on a careful study of the properties of the counter-models
generated by proof-search, which are complete for BBIPD+SU [12].

The right gray box in Figure 1 is a secondary focus of our paper. We prove
the identities BBIPD+IU = BBIPD+DI = BBIPD+SU+CA+IU+DI by exploiting the
fact that the counter-models generated by proof-search which satisfy property
IU also satisfy property DI.

3 Single units in non-deterministic monoids

We give a quick overview of the relations between the multi-unit semantics and
the single unit semantics. We recall that they define the same notion of valid-
ity for BBI and we give a model-theoretic account of this equivalence. Sound-
ness/completeness for the single unit semantics w.r.t. the Hilbert proof system
for BBI were already established in [8].9

Definition 6 (The unit of x). Let (M, ◦, U) be a ND-monoid. For any x ∈M , there
exists a unique ux ∈ U such that x ◦ ux = {x}. It is called the unit of x.

7 relation from which a constructive proof of BBIX = BBIY could be derived.
8 In fact only BBISU ( BBIPD+SU is proved in [14] but the same argument will do.
9 The same proof works for the more general multi-unit semantics, as assumed for in-

stance in Theorem 2.5 of [4]. Hence the identity BBIND = BBISU was known since [8].



Definition 7 (Slice monoid at x). Let M = (M, ◦, U) be a ND-monoid and let
x ∈ M . Then the triple Mx = (Mx, ◦′, {ux}) is a ND-monoid of sub-class SU where
Mx = {k ∈ M | uk = ux} and ◦′ is the restriction of ◦ to Mx which is defined on
Mx ×Mx by u ◦′ v = u ◦ v. The triple Mx is called the slice monoid at x.

Lemma 1. Let M = (M, ◦, U) be a ND-monoid, δ : Var −→ P(M) and x ∈ M .
Let us consider Mx, the slice monoid at x and let δ′ : Var −→ P(Mx) be defined by
δ′(z) = δ(z) ∩Mx for any z ∈ Mx. For any formula F of BBI and any z ∈ Mx, we
have M, z δ F iff Mx, z δ′ F .

Theorem 1. If K ⊆ ND is a sub-class of ND-monoids closed under slicing, then
BBIK = BBIK+SU holds. In particular, BBIND = BBISU and BBIPD = BBIPD+SU.

Remark: the property SU cannot be axiomatized in BBI [4]. The identity
BBIND = BBISU gives another proof argument for this result.

4 Partial Monoidal Equivalences

We recall the framework of labels and constraints that is used to syntactically
represent partial monoids of sub-class PD + SU which form the semantic ba-
sis of partial monoidal Boolean BI. The section is a short reminder of the the-
ory developed in [13] where a labelled tableaux system is introduced and its
soundness w.r.t. the sub-class PD + SU is established. Moreover, the (strong)
completeness of this tableaux system is proved in [12] and this crucial (albeit
non-constructive) result is restated here as Theorem 2.

4.1 Words, constraints, PMEs and the sub-class PD + SU

Let L? be the set of finite multisets of letters of the alphabet L. We call the ele-
ments of L? words; they do not account for the order of letters. The composition
of words is denoted multiplicatively10 and the empty word is denoted ε. Hence
(L?, ·, ε) is the (usual) commutative monoid freely generated by L.

We view the alphabet L or any of its subsets X ⊆ L as a subset X ( L?, i.e.
we assume letters as one-letter words. We denote x ≺ y when x is a sub-word of
y (i.e. ∃k, xk = y). If x ≺ y, the unique k such that xk = y is denoted y/x and
we have y = x(y/x). The carrier alphabet of a word m is Am = {c ∈ L | c ≺ m}.

A constraint is an ordered pair of words in L?×L? denoted m−·····−n. A binary
relation R ⊆ L? ×L? between words of L? is a set of constraints, hence x R y is
a shortcut for x−·····− y ∈ R. The language of a binary relation R ⊆ L?×L? denoted
LR is defined by LR = {x ∈ L? | ∃m,n ∈ L? s.t. xm R n or m R xn}. The carrier
alphabet of R is AR =

⋃
{Am ∪ An | m R n}.

A word m ∈ L? is said to be defined in R if m ∈ LR and is undefined in R
otherwise. A letter c ∈ L is new to R if c 6∈ AR. The language LR is downward
closed w.r.t. the sub-word order ≺. The inclusion LR ⊆ A?R and the identity

10 the additive notation + would conflict with the −·····− sign later used for constraints.



AR = LR ∩ L hold. If R1 and R2 are two relations such that R1 ⊆ R2 then the
inclusions AR1 ⊆ AR2 and LR1 ⊆ LR2 hold. Let us define the particular sets of
constraints/relations we are interested in.

Definition 8 (PME). A partial monoidal equivalence (PME for short) over the
alphabetL is a binary relation∼ ⊆ L?×L? which is closed under the rules 〈ε, s, c, d, t〉:

ε−·····− ε
〈ε〉

x−·····− y
y −·····− x

〈s〉
ky −·····− ky x−·····− y

kx−·····− ky
〈c〉

xy −·····− xy
x−·····− x

〈d〉
x−·····− y y −·····− z

x−·····− z
〈t〉

Proposition 2. Any PME ∼ is also closed under the (derived) rules 〈pl, pr, el, er〉:
kx−·····− y
x−·····− x

〈pl〉
x−·····− ky
y −·····− y

〈pr〉
x−·····− y yk −·····−m

xk −·····−m
〈el〉

x−·····− y m−·····− yk
m−·····− xk

〈er〉

and the identities L∼ = {x ∈ L? | x ∼ x} and A∼ = {c ∈ L | c ∼ c} hold.

See [13] for a proof of Proposition 2. These derived rules will be more suit-
able for proving properties of PMEs throughout this paper. Rule 〈pl〉 (resp. 〈pr〉)
is a left (resp. right) projection rule. Rules 〈el〉 and 〈er〉 express the possibility to
exchange related sub-words inside the PME∼, either on the left or on the right.

Definition 9. A PME is cancellative (resp. has indivisible units, resp. has dis-
jointness) if it is closed under rule 〈ca〉 (resp. rule 〈iu〉, resp. rule 〈di〉).11

kx−·····− ky
x−·····− y

〈ca〉
ε−·····− xy
ε−·····− x

〈iu〉 xx−·····− xx
ε−·····− x

〈di〉

Let us see how the rules 〈ca〉, 〈iu〉 and 〈di〉 relate to sub-classes CA, IU and
DI. Let ∼ be a PME over L. The relation ∼ is a partial equivalence on L? by
rules 〈s〉 and 〈t〉. The partial equivalence class of a word x is [x] = {y | x ∼ y}.
The partial quotient L?/∼ is the set of non-empty classes L?/∼ = {[x] | x ∼ x}.
We define a non-deterministic composition on L?/∼ by [z] ∈ [x] • [y] iff z ∼ xy.

Proposition 3. The triple M∼ = (L?/∼, •, {[ε]}) is a ND-monoid of sub-class PD +
SU. M∼ is of sub-class CA (resp. sub-class IU, resp. sub-class DI) if and only if ∼ is
closed under rule 〈ca〉 (resp. rule 〈iu〉, resp. rule 〈di〉).

4.2 Generated PME, basic PME extensions and simple PMEs

Defined by closure under some deduction rules, the class of PMEs over an al-
phabet L is thus closed under arbitrary intersections. Let C be a set of con-
straints over the alphabet L. The PME generated by C is the least PME containing
C. It is either denoted by ∼C or C and the notations m ∼C n and m −·····− n ∈ C are
synonymous. The operator C 7→ C is a closure operator on sets of constraints,
i.e. it is extensive (C ⊆ C), monotonic (C ⊆ D implies C ⊆ D) and idempotent
(C ⊆ C). The identity AC = AC holds (see [13] Proposition 3.16) but the identity
LC = LC does not hold in general, only the inclusion LC ⊆ LC holds.
11 Not every PME is cancellative; e.g.∼ = {ε−·····−ε, x−·····−x, y−·····−y, k−·····−k, kx−·····−kx, ky−·····−ky, kx−·····−

ky, ky −·····− kx} is a non-cancellative PME over L = {x, y, k}.



Proposition 4 (Compactness). Let C be a set of constraints over the alphabet L and
m,n ∈ L? be s.t.m ∼C n holds. There exists a finite subset Cf ⊆ C such thatm ∼Cf n.

This compactness property (proved in [13] Proposition 3.17) is not related
to the particular nature of rules defining PMEs but solely to the fact that the
rules 〈ε, s, c, d, t〉 only have a finite number of premises.

Definition 10 (PME extension). Let ∼ be a PME and C be a set of constraints, both
over L. We denote by ∼+ C = (∼ ∪ C) the extension of ∼ by the constraints of C.

The extension ∼ + C is the least PME containing both ∼ and C. Let ∼ be
a PME and C1, C2 be two sets of constraints. The identities (∼ + C1) + C2 =
(∼ + C2) + C1 = ∼ + (C1 ∪ C2) hold. Moreover, for any m,n ∈ L?, the relation
m ∼ n holds if and only if the identity ∼+ {m−·····− n} = ∼ holds.

We single out PME extensions of the forms ∼+ {ab−·····−m}, ∼+ {am−·····− b} or
∼+ {ε−·····−m}where m is defined in ∼ and a 6= b are two letters new to ∼. These
extensions are generated by proof-search in the tableau method for BBI [12].

Definition 11 (Basic extension). Given a PME ∼ over the alphabet L, a constraint
is basic w.r.t. ∼ when it is of one of the three forms ab −·····−m, am −·····− b or ε −·····−m with
m ∼ m and a 6= b ∈ L\A∼. When x−·····− y is basic w.r.t. ∼, we say that ∼+ {x−·····− y} is
a basic extension of the PME ∼.

Let k ∈ N ∪ {∞} and (xi −·····− yi)i<k be a sequence of constraints. Let Cp =
{xi −·····− yi | i < p} for p < k. We suppose that each extension ∼Cp + {xp −·····− yp} is
basic for any p < k. If k < ∞ (resp. k = ∞) then the sequence (xi −·····− yi)i<k is
called basic (resp. simple). The empty sequence of constraints is basic.

Definition 12. A basic (resp. simple) PME is of the form ∼C where C = {xi −·····− yi |
i < k} and (xi −·····− yi)i<k is a basic (resp. simple) sequence of constraints.

Any basic PME is simple: indeed, by rule 〈ε〉we have∼+{ε−·····−ε} = ∼ for any
PME ∼. Thus, using case ε −·····−m of Definition 11 with m = ε, we can complete
any basic sequence into a simple sequence by looping on ε −·····− ε. The converse
does not hold: simple PMEs with infinite alphabets are not basic.

Remark: we point out that in the set of constraints C, the order of appearance
of constraints does not impact the closure ∼C . However, in a basic (or simple)
sequence of constraints, the order is important because the newness of letters
depends on the previous constraints in the sequence. Moreover, to prove that a
PME is not basic, it is not sufficient to show that the sequence that defines it is
not basic: maybe there exists another defining sequence which is basic.

5 Equivalence results for some Separation Algebras

In this section, we show our main result: many of the different classes of sep-
aration algebra found in the literature (see discussion of Section 2) cannot be
distinguished by any formula of Boolean BI. This is a stronger result than the



impossibility to axiomatize those classes in BBI [4]. Our result relies in an es-
sential way on the (non-constructive) strong completeness theorem for partial
monoidal BBI [12].12 “Strong” means that BBIPD+SU is complete for the specific
monoids that are generated by tableaux proof-search, i.e. simple PMEs.

Theorem 2 (Strong completeness for partial monoidal BBI). Let F be a BBI-
formula that is invalid in some partial deterministic monoid with single unit, i.e. F 6∈
BBIPD+SU. There exists a countable alphabet L, a simple PME ∼ over L, a valuation
δ : Var −→P(L?/∼) and a letter a ∈ L such that a ∼ a and M∼, [a] 1δ F .

We will exploit the following properties of simple PMEs to derive our equiv-
alence results for some separation algebras / abstract separation logics.

Theorem 3. Simple PMEs are closed under rule 〈ca〉. Simple PMEs which are closed
under rule 〈iu〉 are also closed under rule 〈di〉.

Theorem 3 is the core result of the current paper. In Section 6, we introduce
the tools used in its proof. In Section 7, we show that this proof cannot be done
by direct induction on the sequence of constraints. In Section 8, we develop
the argumentation using a detour via primary PMEs. The result is formally
obtained as a conjunction of Corollaries 2 and 3.

Theorem 4. The following notions of separation algebras found in the literature col-
lapse to the same validity on BBI formulæ. Formally, we have the identities:

(a) BBIPD = BBIPD+SU = BBIPD+CA = BBIPD+SU+CA;
(b) BBIPD+IU = BBIPD+DI = BBIPD+SU+CA+IU+DI.

Proof. Let Q and K be the two following sub-classes Q = PD + SU + CA and
K = Q + IU + DI of ND-monoids. For (a), we prove the inclusions BBIQ ⊆
BBIPD+SU ⊆ BBIPD ⊆ BBIPD+CA ⊆ BBIQ. We have BBIPD ⊆ BBIPD+CA ⊆
BBIQ by sub-class inclusion in ND-monoids. By Theorem 1, we have BBIPD =
BBIPD+SU. Hence, to obtain (a), it is sufficient to prove BBIQ ⊆ BBIPD+SU.
For (b), we show the inclusions BBIK ⊆ BBIPD+IU ⊆ BBIPD+DI ⊆ BBIK . Since
we have K ⊆ PD + DI, the inclusion BBIPD+DI ⊆ BBIK is immediate. Then
the inclusion BBIPD+IU ⊆ BBIPD+DI is a direct consequence of Proposition 1.
Hence, to obtain (b), it is sufficient to prove BBIK ⊆ BBIPD+IU.

Let us prove the contrapositive of the inclusion BBIQ ⊆ BBIPD+SU. Let us
consider F 6∈ BBIPD+SU and let us show F 6∈ BBIQ. By Theorem 2, we obtain
a simple PME ∼, a valuation δ : Var −→ P(L?/∼) and a letter a ∈ L such that
a ∼ a and M∼, [a] 1δ F . By Theorem 3, the simple PME ∼ is closed under
rule 〈ca〉 and thus, by Propositions 3, the partial quotient monoid M∼ belongs
to the sub-class PD + SU + CA. We deduce F 6∈ BBIQ.

Before we prove the inclusion BBIK ⊆ BBIPD+IU, let us make a remark on
the formula U = ¬(¬I∗¬I) and the scheme (I∧U)−∗ (·). Let M = (M, ◦, {e}) be
a ND-monoid of sub-class SU and let δ : Var−→P(M). Then we have M, e δ U
12 The proof in Coq is available at http://www.loria.fr/~larchey/BBI.

http://www.loria.fr/~larchey/BBI


if and only if M is of sub-class IU. Let F be a BBI-formula. Then for any x ∈M ,
we have M, x 1δ (I ∧U)−∗ F if and only if M is of sub-class IU and M, x 1δ F .

Let us now prove the contrapositive of the inclusion BBIK ⊆ BBIPD+IU. Let
us consider a formula F such that F 6∈ BBIPD+IU and let us show F 6∈ BBIK .
Let us first establish (I ∧ U) −∗ F 6∈ BBIPD+SU. Since the sub-class PD + IU is
closed under slicing, by Theorem 1 we have F 6∈ BBIPD+SU+IU. Hence there
exists a counter-model M of F in sub-class PD + SU + IU. From the previous
remark on U, we deduce that M is also a counter-model of (I ∧ U) −∗ F . As M
also belongs to sub-class PD + SU, we deduce (I ∧ U)−∗ F 6∈ BBIPD+SU.

We apply Theorem 2 and we obtain a counter-model of (I ∧ U) −∗ F of the
form M∼ where ∼ is a simple PME. Since M∼ is of subclass SU, we deduce
that M∼ is of subclass IU and M∼ is a counter-model of F (see previous remark
on U). Hence M∼ is of sub-class PD + SU + IU. Thus by Proposition 3, ∼ is
closed under rule 〈iu〉. Hence by Theorem 3, the simple PME ∼ is closed under
rules 〈ca〉 and 〈di〉. By Proposition 3, M∼ is a counter-model of F of sub-class
PD + SU + CA + IU + DI and we conclude F 6∈ BBIK .

Remark: unlike IU, DI is not axiomatizable in BBI [4] thus we cannot have
BBIDI = BBIIU. Hence the strict inclusion BBIIU ( BBIDI by Proposition 1. Let
us now discuss and develop the proof of Theorem 3, our core result.

6 Invertibility, group-PMEs and squares

In this section, we study the properties of the extension ∼ + {ε −·····−m} and how
they impact invertible letters/words. We introduce the notion of group-PME.

Definition 13. A group-PME over L is a PME ∼ such that A∼ = I∼ where I∼ =
{c ∈ L | ε ∼ cβ holds for some β ∈ L?} is the set of invertible letters of ∼.

The operator ∼ 7→ I∼ is monotonic. By rule 〈pr〉, the inclusion I∼ ⊆ A∼
holds for any PME. We may write IC for I∼C ; this should not lead to any ambi-
guity. We introduce a set of derived rules related to invertible words (in I?∼) and
we analyze the relations between ∼ and invertible words. Appart from the let-
ter α which serves as a parameter for (primary) extensions, we ease the reading
by denoting invertible words with greek letters β, γ, ... in place of x, y, ...

Definition 14 (Squares and invertible squares). We say that a word α ∈ L? is
square-free if ∀c ∈ L, cc 6≺ α. We say that the PME ∼ be over L has invertible
squares if ∀c ∈ L, cc ∼ cc⇒ c ∈ I∼ (i.e. any squarable letter is invertible).

Proposition 5. Let ∼ be a PME over L. If ∼ has invertible squares then for any word
k ∈ L?, if kk ∼ kk holds then k ∈ I?∼ holds.

Proposition 6. PMEs are closed under rules 〈εc, i↑, ic, is, i←, i→〉:
ε−·····− γ ε−·····− β

ε−·····− γβ
〈εc〉

x−·····− y ε−·····− γβ
γx−·····− γy 〈ic〉

x−·····− βy ε−·····− γβ
γx−·····− y 〈i←〉

ε−·····− γβ ε−·····− γβ′

β −·····− β′
〈i↑〉

γx−·····− γy ε−·····− γβ
x−·····− y 〈is〉

γx−·····− y ε−·····− γβ
x−·····− βy

〈i→〉



ε

k x y a b c

kx ∼0 ab ac ∼0 ky

ε

k x y

a ∼1 kx ∼1 ky

ε y y2 yn

a ∼2 k ∼2 · · · ∼2 kyn ∼2 · · ·

· · · · · ·

C0 = {kx −·····− ab, ky −·····− ac} C1 = C0 ∪ {ε−·····− b, ε−·····− c} C2 = C1 ∪ {ε−·····− x}

Fig. 2. The partial equivalence classes of ∼0 = C0, ∼1 = C1 and ∼2 = C2

Proposition 7. Let ∼ be a PME over L and x, y ∈ L? and γ ∈ I?∼. We have: (a)
x ∈ I?∼ iff ∃β ε ∼ xβ; (b) x ∼ y iff γx ∼ γy; (c) the inclusion I?∼ ⊆ L∼ holds; (d) if
x ∼ y then x ∈ I?∼ ⇔ y ∈ I?∼.

In any group-PME ∼, every defined letter is invertible and from Proposi-
tion 7 (c), we obtain the identity L∼ = I?∼.13 Proposition 8 makes explicit a
sufficient condition under which extensions do not change invertible letters: no
new invertible letter appears in ∼+ {x−·····− y} unless either x ∈ I?∼ or y ∈ I?∼.

Proposition 8. Let∼ be a PME and C be a set of constraints such that for any x−·····−y ∈
C the identity {x, y} ∩ I?∼ = ∅ holds. Then the identity I∼+C = I∼ holds.

7 No direct inductive proof of cancellativity for basic PMEs

We argue that it is not possible to prove cancellativity of basic PMEs by a di-
rect induction on the length of the sequence defining them. This justifies the
involved development that lies ahead. We present an example where the exten-
sions ∼+ {ε−·····−m} break cancellativity and introduce non-invertible squares.14

Let k, x, y, a, b, c ∈ L be six different letters. Let us consider the following
PME ∼0 = ∼C0 where C0 = {kx −·····− ab, ky −·····− ac}. In Figure 2, we represent the
corresponding set of partial equivalence classes of ∼0. It is left to the reader
to check that these are indeed the partial equivalence classes of the closure of
C0: we have L?/∼0 = {[ε], [k], [x], [y], [a], [b], [c], [kx], [ky]} with [α] = {α} for
α ∈ {ε, k, x, y, a, b, c} and [kx] = {kx, ab} and [ky] = {ky, ac}. We check that
∼0 is cancellative and has invertible squares (it contains no square except ε).

Now we consider the extension C1 = C0 ∪ {ε −·····− b, ε −·····− c} and ∼1 = ∼0 +
{ε −·····− b, ε −·····− c}. Let us denote E = b?c? = {bicj | i, j ∈ N}. Then L?/∼1 =
{[ε], [k], [x], [y], [a]} where [α] = αE for α ∈ {ε, k, x, y} and [a] = (a | kx | ky)E.
The PME ∼1 is not cancellative anymore. Indeed, kx ∼1 ky but x �1 y. Hence
we have an example that shows that the extension∼+{ε−·····−m} does not preserve
cancellativity. But still ∼1 has invertible squares; check that I∼1 = {b, c}.

13 In that case, ∼ is a congruence over I?
∼ and the quotient I?

∼/∼ is an Abelian group.
14 i.e. some kk with kk ∼ kk and k 6∈ I?

∼; see Definition 14.



Finally we consider the extension C2 = C1 ∪ {ε−·····− x} and ∼2 = ∼1 + {ε−·····− x}.
Let us denote E = b?c?x?. Then L?/∼2 = {[yn] | n > 0} ∪ {[a]} with [yn] = ynE
and [a] = (a | k)y?E. Like ∼1, the PME ∼2 is not cancellative. Moreover it has
squares like y2 where y is not an invertible letter; check I∼2 = {b, c, x}. Hence
∼2 contains non-invertible squares.

We see that the extension ∼ + {ε −·····−m} preserves neither cancellativity nor
the invertibility of squares. Therefore it is not possible to show that basic PMEs
have these properties by direct induction on the basic sequence.

8 Basic PMEs are primary extensions of group-PMEs

We define the notion of primary extension and use the equations in Lemma 3 to
show that cancellativity and invertible squares are preserved by primary exten-
sions. We then prove that basic PMEs are primary extensions of group-PMEs.

Definition 15 (Primary PME). Let∼ be a PME over L and α,m ∈ L? be two words
such that m ∼ m, α 6= ε, A∼ ∩ Aα = ∅ and α is square-free. A type-1 extension of
∼ is of the form ∼+ {α−·····−m}; A type-2 extension of ∼ is of the form ∼+ {αm−·····− b}
with b ∈ L\(A∼ ∪ Aα). A primary extension of ∼ is a type-1 or a type-2 extension
of ∼. The class of primary PMEs is the least class containing group-PMEs and closed
under primary extensions.

We show that the properties of “cancellativity” and “invertible squares”
hold for group-PMEs and are preserved by primary extensions.

Lemma 2. Every group-PME is cancellative and has invertible squares.

Lemma 3. Let ∼ be a PME over L and m,α ∈ L? be such that m ∼ m, α 6= ε and
Aα ∩ A∼ = ∅. Then the two following identities hold:

∼+ {α−·····−m} = {δαux−·····− δαvy | ∃i, mux ∼ mvy,mi+ux ∼ mi+vy and δ ≺ αi}
∼+ {αm−·····− αm} = ∼ ∪ {δx−·····− δy | x ∼ y, ε 6= δ ≺ α and ∃q xq ∼ m}

Moreover, if ∼ is cancellative then both ∼ + {α −·····− m} and ∼ + {αm −·····− αm} are
cancellative; and if ∼ has invertible squares and α is square-free then both∼+{α−·····−m}
and ∼+ {αm−·····− αm} have invertible squares.

Corollary 1. Primary PMEs are cancellative and have invertible squares.

The proof of Lemma 3 is long/technical but not too difficult (once you have
the equations). We now prove our core result: basic PMEs are primary PMEs;
in particular, they are cancellative and have invertible squares.

Theorem 5. Basic PMEs are primary PMEs.

Proof. Let us consider a basic PME ∼. By Definition 12, there exists a basic
sequence of constraints (xi −·····− yi)i<k such that ∼ = ∼H, with k < ∞ and
H = {x0−·····−y0, . . . , xk−1−·····−yk−1}. For any q 6 k, we denoteHq = {xi−·····−yi | i < q}.



The extension ∼Hq +{xq −·····− yq} is basic for any q < k. We recall the notation
I∼ = IH for the set of invertible letters of ∼ = ∼H.

From xi −·····− yi ∈ H, we deduce xi ∼ yi and by Proposition 7 (d), we have
xi ∈ I?∼ iff yi ∈ I?∼ for any i < k. Hence we obtain a partition [0, k[ = C ] D
with C = {i < k | {xi, yi} ⊆ I?∼} and D = {i < k | {xi, yi} ∩ I?∼ = ∅}. Let us
denote C = {xi −·····− yi | i ∈ C} and D = {xi −·····− yi | i ∈ D}.

Let us enumerate D = {σ0 < · · · < σd−1} in strictly increasing order with
d = card(D) 6 k and σ : [0, d[ −→ [0, k[. For q 6 d, let us denote Dq = {σi | i <
q}. We show the inclusion [0, σq[ ⊆ C ∪Dq : indeed, let us consider j < σq and
let us prove j ∈ C ∪ Dq . From σq < k, we deduce j ∈ [0, k[ = C ] D. In case
j ∈ C, we have finished. In case j ∈ D = {σ0 < · · · < σd−1}, then j = σr for
some r < d. If q 6 r then σq 6 σr = j which contradicts j < σq . Hence we must
have r < q and we conclude j = σr ∈ Dq . Let us denoteDq = {xσi−·····−yσi | i < q}
for q 6 d. From Dq ⊆ [0, σq[ we derive Dq ⊆ Hσq .

Let us prove the identities AC = IC = I∼. Since H = C ∪ D, we get ∼H =
∼C+D. Moreover, every constraint ofD is of the form x−·····−y with {x, y}∩I?∼ = ∅.
As IC ⊆ IH = I∼ we deduce {x, y} ∩ I?C = ∅ for every constraint x −·····− y ∈ D.
Thus, by Proposition 8, we have I∼C+D = I∼C and thus IC = I∼C = I∼C+D =
I∼H = I∼. Also, for any x−·····− y ∈ C we have {x, y} ⊆ I?∼ and thus AC ⊆ I∼. We
conclude AC = IC = I∼. In particular, ∼C is a group-PME.

Let us define Eq = C ∪ Dq for q 6 d. As C ⊆ Eq ⊆ Ed = C ∪ Dd = C ∪ D = H,
we deduce I∼ = IC ⊆ IEq ⊆ IH = I∼ and thus IEq = I∼ for any q 6 d. Let
us establish the inclusions Hσq ⊆ Eq and AEq \AHσq ⊆ I∼. The first inclusion
follows from [0, σq[ ⊆ C ∪Dq and the definitions ofHσq and Eq . For the second
inclusion, starting with Dq ⊆ Hσq we derive Eq = C ∪ Dq ⊆ C ∪ Hσq and thus
AEq ⊆ AC ∪ AHσq = I∼ ∪ AHσq . Hence the inclusion AEq \AHσq ⊆ I∼.

Let us show by induction on q 6 d that ∼Eq is a primary PME. First the
ground case. We have D0 = ∅ and thus the identity ∼E0 = ∼C holds. As a con-
sequence, ∼E0 is a group-PME and thus is a primary PME. Then the induction
step. We assume that ∼Eq is a primary PME and we show that ∼Eq+1 = ∼Eq +
{xσq−·····−yσq} is also a primary PME. For this aim, we show that∼Eq+{xσq−·····−yσq} is
identical to a primary extension of∼Eq . We remind that the constraint xσq −·····−yσq
is basic w.r.t. ∼Hσq . We proceed by case analysis on that fact (see Definition 11):

– if xσq −·····− yσq = ab−·····−m with m ∼Hσq m and a 6= b ∈ L\AHσq . FromHσq ⊆ Eq
we deduce m ∼Eq m. We establish the relation {a, b} * AEq : if {a, b} ⊆ AEq
holds then we have {a, b} ⊆ AEq\AHσq ⊆ I∼ and as a consequence ab ∈ I?∼.
But from σq ∈ D, we get ab = xσq 6∈ I?∼ which leads to a contradiction.
In case {a, b} ∩ AEq = ∅ then Aab ∩ AEq = ∅, ab 6= ε is square-free and
m ∼Eq m. Hence, ∼Eq + {ab−·····−m} is a type-1 primary extension of ∼Eq .
In case a ∈ AEq and b 6∈ AEq then a ∈ AEq \AHσq ⊆ I∼ = IEq and hence we
have ε ∼Eq aβ for some β. The identity ∼Eq + {ab−·····−m} = ∼Eq + {b−·····−mβ}
holds by direct application of rules 〈i←〉 and 〈i→〉. We verify that∼Eq +{b−·····−
mβ} is a type-1 primary extension of∼Eq : b 6= ε is square-free,Ab∩AEq = ∅,
mβ ∼Eq mβ (because m ∼Eq m, ε ∼Eq aβ and rule 〈ic〉). Hence ∼Eq + {ab−·····−
m} is identical to a type-1 primary extension of ∼Eq .



The case b ∈ AEq and a 6∈ AEq can be treated in a symmetric way. In any
of these three cases, we have proved that the PME ∼Eq + {ab −·····−m} can be
expressed as a type-1 primary extension of ∼Eq ;

– if xσq −·····− yσq = am−·····− b with m ∼Hσq m and a 6= b ∈ L\AHσq . From σq ∈ D,
we have b = yσq 6∈ I?∼ and thus b 6∈ I∼. From the inclusion Hσq ⊆ Eq ,
we deduce m ∼Eq m. We further have b 6∈ AEq (otherwise we would have
b ∈ AEq \AHσq ⊆ I∼ contradicting b 6∈ I∼). We consider the two cases
a 6∈ AEq and a ∈ AEq .
In case a 6∈ AEq then we check that ∼Eq + {am −·····− b} is a type-2 primary
extension: a 6= ε is square-free, Aa ∩ AEq = ∅, m ∼Eq m and b 6∈ AEq ∪ Aa.
In case a ∈ AEq then a ∈ AEq \AHσq ⊆ I∼ = IEq . Hence there exists β such
that ε ∼Eq aβ. The identity ∼Eq + {am −·····− b} = ∼Eq + {b −·····− am} holds by
rule 〈s〉. Let us check that ∼Eq + {b −·····− am} is a type-1 primary extension of
∼Eq : b 6= ε is square-free and Ab ∩ AEq = ∅ holds. am ∼Eq am is the last
remaining condition, obtained from m ∼Eq m and ε ∼Eq aβ using rule 〈ic〉.
In any of these two cases, we have proved that the PME∼Eq +{am−·····−b} can
be expressed as a type-1 or as type-2 primary extension of ∼Eq ;

– if xσq −·····− yσq = ε −·····−m with m ∼Hσq m. Then we have xσq = ε ∈ I?∼ which
directly contradicts {xσq , yσq} ∩ I?∼ = ∅. Hence this case is not possible.

Hence, by induction on q 6 d, the PME ∼Eq is primary. In particular ∼Ed =
∼H = ∼ is a primary PME.

Corollary 2. Basic and simple PMEs are cancellative and have invertible squares.

Corollary 3. Simple PMEs closed under rule 〈iu〉 are also closed under rule 〈di〉.

9 Conclusion

In this paper, we prove that validity in Boolean BI does not distinguish between
some of the different notions of separation algebras commonly found in the
literature. This result is obtained by an in-depth examination of the syntactic
properties of basic/simple PMEs which are the counter-models that are gener-
ated by tableaux proof-search. We show that these models are cancellative and
that the only squares they allow are composed of invertible letters using a de-
tour via the notion of primary PME. From the cancellativity of simple PMEs and
the strong completeness theorem, we derive equivalence results for cancellative
partial monoids. We relate indivisibility of units to the disjointness property.

We propose some perspectives. First, we could investigate more proper-
ties of basic/simple PMEs to enrich the graph of known relations between the
family (BBIX)X . In particular, we expect a full characterization of basic PMEs
that could lead to finer properties of simple PMEs. Another track of research
would be to find a constructive proof of the results of this paper. There is little
hope to succeed by using the strong completeness which is inescapably non-
constructive; but we could for instance approach the problem by eliminating
the cancellativity rule in the proofs of the sequent calculus [9]. Another way to
tackle the problem would be to design bisimulations or at least Kripke seman-
tics preserving relations between cancellative and non-cancellative models.
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