A Modal BI Logic for Dynamic Resource Properties*

J.R. Courtault and D. Galmiche

Université de Lorraine — LORIA UMR 7503
Campus Scientifique, BP 239
Vandceuvre-les-Nancy, France

Abstract. The logic of Bunched implications (BI) and its variants or extensions
provide a powerful framework to deal with resources having static properties. In
this paper, we propose a modal extension of BI logic, called DBI, which allows
us to deal with dynamic resource properties. After defining a Kripke semantics
for DBI, we illustrate the interest of DBI for expressing some dynamic properties
and then we propose a labelled tableaux calculus for this logic. This calculus is
proved sound and complete w.r.t. the Kripke semantics. Moreover, we also give a
method for countermodel generation in this logic.

1 Introduction

The notion of resource is an important notion in computer science. The location, owner-
ship, access to and, indeed, consumption of, resources are central concerns in the design
of systems, such as networks, and in the design of programs, which access memory and
manipulate data structures like pointers. We are interested in studying such notions on
resources through logics with an emphasis on usable semantics and proof-theory. In this
context we can mention Linear Logic (LL) [5] that focuses on resource consumption
and the logic of Bunched Implications (BI) [13]] that mainly focuses on resource sharing
and separation. The BI logic and its variants, like Boolean BI (BBI) [1 1413}, can be seen
as the logical kernel of so-called separation logics, that provides a concrete way of un-
derstanding the connectives in the context of program verification [7/14]]. Some recent
results on BI and BBI concern new semantics [4]], proof-search with labelled tableaux
and resource graphs [3l4] and (un)decidability of these logics [419]. Some extensions
or refinements have led to separation logics, like BI’s pointer logic (PL) [7] that allows
us to express properties on pointers or BiLoc [1] that is based on resource trees and
captures the notion of place. In this context MBI logic [12] extends BI with modalities
and a calculus a la Hennessy-Milner [10]] dealing with processes and resources.

We can remark that two kinds of dynamic are captured by BI, BBI and their exten-
sions. On the one hand, there are logics that transform resources into other resources,
which is a first kind of dynamic. On the other hand, there are logics where properties of
resources can change (called here dynamic properties) or not (called here static prop-
erties). For example, in BI logic the resource properties are static because if a resource
satisfies a property, it will always satisfies this property. The dynamic, that corresponds

* This work is supported by the ANR grant DynRes on Dynamic Resources and Separation and
Update Logics (project no. ANR-11-BS02-011).

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 134148l 2013.
(© Springer-Verlag Berlin Heidelberg 2013

A Modal BI Logic for Dynamic Resource Properties 135

to the transformation of resources, is captured in LL by proofs and in PL by a calculus
a la Hoare [6]. Moreover in MBI, the dynamic is also based on resource transformation
because of a calculus a la Hennessy-Milner with judgements of the form R,E < R’ | E’,
which means that a process E performs an action a on a resource R in order to obtain
a resource R’ and then becomes a process E’. But the modalities a la Hennessy-Milner
can only express properties on R’ and E’, directly at the next state, but not on any reach-
able resource and process (or state), knowing that reachable means after performing any
action.

In this paper, we are interested in expressing some dynamic properties on resources
directly at level of formulae, on future states (and not only on the next ones) and in
dealing with interacting systems. Then we define a modal extension of BI, called DBI
(Dynamic Bunched Implications logic), in order to model some dynamic properties of
resources. We define a Kripke semantics for this logic, which is an extension of Kripke
semantics for BI with state constraints (a set of states with a preorder) introduced in
addition to resource constraints. We also give a labelled tableaux calculus in the spirit
of works on BI logic [3/4] but dealing with both resource graphs and state graphs.
This calculus is proved sound and complete w.r.t. this semantics, with generation of
countermodels in case of non-validity in DBIL.

2 The DBI logic

Bl logic is a logic that expresses sharing and separation properties on resources [[11113].
We present here a modal extension of BI, called DBI, which allows us to express some
dynamic properties on resources. The language £ of DBI is obtained by adding two
modalities [J and ¢ to the BI language [13].

Let Prop be a countable set of propositional symbols, the language L of DBI is
defined as follows, where p € Prop:

Xu=p|T|L|I|XAX|XVX|X—5X|X*X|X—=X|0X|0OX

The negation is defined by: =X =X — L. We now define a Kripke semantics that can be
seen as an extension of the Kripke semantics of BI [4] based on a resource monoid. In
the case of DBI we consider a dynamic resource monoid with an explicit inconsistency,
and also a preorder set of states with an accessibility relation between states.

Definition 1 (Dynamic resource monoid). A dynamic resource monoid is a structure
M = (R,e,e,m,C,S, <) such that:

— R s a set of resources and S is a set of states
—e¢e€RandmeR
— o :R X R — R such that:
- Neutral element: Vr €ER, ree —coer=r
- Associativity: Vri,r,r3 ER, rie(r,er) = (rier)ers
- Commutativity: Nri,1 €ER, riernp =ryer
— C CRXRisapreorder (on resources):
- Reflexivity:Yr € R, r Cr
- Transitivity: Vry,r, 73 €R, if ry Erpand rp T r3 thenry C 13

136 J.R. Courtault and D. Galmiche

— T € R is the greatest element: Vr € R, rCtandVr € R, renw =T.
— X C S xSisapreorder (on states)
— Compatibility (P): Nri,rp,r3 €R, if ri Ery thenrier; Crper;

We note P(E) the powerset of the set E, namely the set of sets built from E. We call
e the unit resource (empty resource), T the inconsistent resource and e the resource
composition. A preordered set (S, <) is added to the Kripke’s BI semantics with S that
can be viewed as the states of a system and < as the accessibility (through transitions)
of states of the system.

Definition 2 (Dynamic interpretation). A dynamic interpretation is a function [-] :
Prop — IP(R x S), that verifies the following properties, for any s € S and p € Prop:

— Monotonicity (K): ¥r,r € R such that r C 7, if (r,s) € [p] then (V,s) € [p]
— Inconsistency (BC): Vr € R such thatn C r, (r,s) € [p]

As we see the dynamic interpretation makes the resource properties non static: the in-
terpretation of a propositional symbol is not only a set of resources (as BI), but a set of
pairs of resources and states.

Definition 3 (Dynamic resource model). A dynamic resource model is a triple K =
(M,], Ex) such that M is a dynamic resource monoid, [-] is a dynamic interpretation
and =g is a forcing relation on R x S x L defined as follows:

- nsEx piff (rs) € [p]

- rnskEgliffeCr

- r,sFEq T always

-rsEg LiffnCr

- rsEx OANYiffr,sEg dandrsEg Wy

- rsEx OV iffrsEx dorrsExy

- nsEx 0= YiffVP €eR-(rCrand v ,sEx ¢) = sExy
- nsExoxyiff3F, 7" €R-For" Crand v ,sEx dandr’ sExy
- rsEx Oy iff V' ER-V sEx 0=rer sExy

- rsEx OO iff3s’ €S s <5 andr,s Fx 0

- rsEx 00 iff Vs €S-s <5 =nrsEFxd

The definition of the forcing relation is an extension of the BI forcing realtion with the
cases for U and ¢. For instance r,s F4 O¢ means that a resource r at state s satisfies
Q¢ if a state s’ can be reached from the state s (s < s") such that r in state s’ satisfies ¢
(r,s' Ex ¢). Now we define the notion of validity.

Definition 4 (Validity). A formula ¢ is valid, denoted = ¢, if and only if e,s F g ¢ for
all dynamic resource models K (and all states s € S).

The notation ¢ =y means that for all resources r and all states s of any dynamic
resource model K, if r,s Eq O then r,s =g .

We give two lemmas that hold for all dynamic resource models X, all formulae ¢, all
resources r,7 € R and all states 5" € S.

Lemma 1 (Monotonicity). I[f r,s Ex ¢ and r C ¥ then r',s E« 0.

Lemma 2 (Inconsistency). We have wt,s F« ¢.

A Modal BI Logic for Dynamic Resource Properties 137

3 Expressiveness of DBI

We have previously introduced a semantics for modelling resources having dynamic
properties. In this section we emphasize the interest of this modal extension of BI by
illustrating it through some simple examples.

The first example deals with the management of resources with dynamic properties.
In BI logic the propositional symbols are considered as static descriptions/properties of
resources. But, we know that resource properties are not always static. For example, if
we consider the price of gold and silver, it is a dynamic property depending not only on
the resource. Let us denote r, the resource ”one ounce of gold” and r the resource ”one
ounce of silver”. Propositional symbols Py, and P, are prices of r, and rs on January
Ist of the year y. Moreover, s, denotes the state of the market on January 1st of the year
y. With DBI we are able to express the evolution of the silver and gold price:

rg ®15,51970 Fx (Peyg70 * Prjorg) N O (Pesors * Pogg)

It means that on January 1st of the year 1970 (s1970), a resource composed by one ounce
of gold and one ounce of silver (7 ® r;) has two properties: it could be decomposed into
two resources respectively satisfying the properties Py,y,, and Py, (Pg 970 * Ps97,) and,
in a future state, it could be decomposed into two resources respectively satisfying the
properties szolz and Pszolz (szolz * PSzolz)'

The second example illustrates how with DBI and a dynamic resource monoid we
can deal with properties on interacting systems. A dynamic resource monoid can be
viewed as two interacting systems. Indeed a resource monoid can model a first system,
where resources are states of this system and the preoder on resources is the state reach-
ability of this system [2]. Furthermore, the dynamic part of a dynamic resource monoid
(set of states with a preorder), can be viewed as an automaton and easily models a sec-
ond system. Moreover, the dynamic interpretation can be viewed as the result of the
interaction of these systems. For example, (r,s) € [p] can express that, if a first system
is in state r and a second system is in state s then their interaction satisfies the property
p. Here the word interaction does not mean that one of these systems influences the
second one: the preorder on resources does not depend on states and the preorder on
states does not depend on resources. Then the interaction (r,s) € [p] means that there
are two free (non influencing) systems which can perform together an action, which
satisfies the property p if the first system is in state r and the second system is in state s.

Let us consider a message sent in a network and modelled with a resource monoid.
We consider only five states (resources) R = {e,mm,,mpassi,,g,mdd,-ve,ed,n}, where e is
the state with no message, is the state with an error that occurs in the system, m1,,,; 1S
the state where the message is sent, 74sing 1S the state where the message is passing in
transit and mgejivereq 18 the state where the message is delivered. The relation T, where
reflexivity and transitivity are not represented, is:

138 J.R. Courtault and D. Galmiche

In a first step, there is no message (e¢). Then the message is created and sent (725ey¢).
In a third step, it is passing in transit (#,4ss5ine) and then, in a fourth step, it is delivered
(Mgelivered)- As we can remark, mpugsing & Mgens, DUt Mpygsing 1s the next state of mye,
and it is not a mistake. As m,; can reach mqgsing then we aim the properties of 1 p4gsing
to be satisfied by the resource m;.,;. In other words, if a resource r satisfies a property
p, then all resources that can reach r satisfy p. This is the property (K) of Definition 2l
In this example, we only consider one message and then we define e by (e r = r) and
(rer =mif r# e and ¥ # e), but it is possible to consider states composed by more
than one message. We remark that 7 is the biggest resource (by definition of dynamic
resource monoid), so when an error occurs (1), all states are reachable: it is considered
that when an error occurs, it is impossible to predict the behavior of the system.

Now we define the following service as a second system, where reflexivity and tran-
sitivity of =< are not represented. It contains four states S = {so,s1,52,s3} with 5o as
initial state and in the state s3 our service reads the delivered messages.

Having defined a dynamic resource monoid we are able to express that when the
message is sent, it is possible that our service read this message, that is: e, S0 Fx
OPu,,.q» Where Py, . is the propositional symbol “message read” that occurs when m is
delivered and the service is in state s3: [Py, .,] = {(r.53) | Maetiverea E 7}

We have mgejivered ;53 F o P,y AS S0 = 53 then mgejivered,So Fx OPmmd (the DBI
modalities encode the reachability of states). As miey,; can reach Myejivered (Mdelivered =

Msent) then Mg, 50 F g OPp,,,, (DBI monotonicity encodes the resource reachability).

4 A proof System for DBI

In this section, we propose a proof system for DBI, in the spirit of previous works on
labelled proof system for BI with resource graphs [4]. We introduce some rules to deal
with modalities and also the notions of state labels and constraints, in order to capture
some dynamic aspects.

4.1 Labels for Resources and States

In labelled tableaux method for BI [4], there are labels and constraints in order to
capture some semantic information inside the proof system. Labels are related to the
resource set (R), a label composition is related to the resource composition (e) and rela-
tions on labels named label constraints are related to C. In DBI, the resource monoids
are dynamic and then there are two sets (for resources and states) and two relations (on
resources and states). Thus we introduce a new kind of labels and constraints to deal
with states. Let us now define labels and constraints for DBI.

A Modal BI Logic for Dynamic Resource Properties 139

Definition 5 (Resource labels). L, is a set of resource labels built from a constant 1,
an infinite countable set of constants Y, = {c1,¢2, ...} and a function denoted o,

Xu=1]c¢|XoX

where c; € Y. Moreover o is a function on L, that is associative, commutative and 1
is its unit. A resource constraint is an expression of the form x <y where x and y are
resource labels.

For example the resource label cj o 1 o ¢y oy is equal to the resource label ¢ ocj o cp.
We denote xy the resource label xoy. Moreover we say that x is a resource sub-label of
y if and only if there exists z such that x oz = y. The set of resource sub-labels of x is
denoted E(x).

Definition 6 (State labels). L, is an infinite countable set of state labels (Ly={11,12, ...}).
A state constraint on such labels is an expression of the form x <y, where x and y are
state labels.

Definition 7 (Domain). Let C, be a resource constraints set, the domain of C,, denoted
D,(C,), is the set of all resource sub-labels appearing in C,. In particular: D,(C,) =

UxﬁyeC,-(Z(x> U E(y»

Definition 8 (Alphabet). The alphabet of a set of resource / state constraints is the set
of all label constants appearing in C, / C;.
In particular we have A,(C;) = YN Dy () and As(Cs) = Uy qvec, {1 v}-

We can remark that C is reflexive, transitive and compatible. Moreover, < is reflexive
and transitive. These properties have to be captured by the constraint sets. For that we
introduce a notion of closure of constraints.

Definition 9 (Closure of resource constraints). Let C, be a set of resource constraints,
the closure of C, (denoted C,) is the least relation closed under the following rules such
that C, C

x<y y<z o xy < xy ky < ky x<y x<y x<y

X<z x<x @ <ty O x<x ooy ™

We can remark that as these rules do not introduce new resource label constants, then

4(6) = 4.(G).

Definition 10 (Closure _Of state constraints). Let C; be a set of state constraints, the
closure of G (denoted Cy) is the least relation closed under the following rules such
that Gy C Cy:

"

x<ly . x4y x4y y<z .
x<x y<y {rsd x<z)

As illEtration we consider :_{11 Qb,b <l3,l3 <1y} Wehavel; <l € C; because
Cs C G and we have /1 <114 € C because

Lh<l L <l ")
Lh<ls : I3 <y
L <y

(ts)

140 J.R. Courtault and D. Galmiche

Proposition 1. Let C; be a set of resource constraints, the following properties hold:

1. Ikagyegthenxgxeg
2. Ifx<kye G theny<ye(

Corollary 1. Let G, be a set of resource constraints, x € D,(C,) iff x < x € G,

Lemma 3 (Compactness). Let C; (resp. C;) be a (possibly infinite) set of resource
constraints (resp. state constraints). If x <y € G (resp. u Qv € () then there exists a
Sfinite set Cy such that Cr C G (resp. Cr € CGs) and x <y € Cr (resp. u v € Cy).

4.2 A Labelled Tableaux Method for DBI

We now define a labelled tableaux method for DBI in the spirit of previous works for
BI [4] and BBI [8].

Definition 11 (Labelled formula / CSS). A labelled formula is a 4-uplet (S,0,x,u) €
{T,F} x L x L, x Ly written S¢ : (x,u). A constrained set of statements (CSS) is a triple
(F,Cr, Cs), where F is a set of labelled formulae, C, is a set of resource constraints
and Cy is a set of state constraints, such that the following property, called (Pess), holds:
ifSo: (x,u) € F thenx <x€ Crandu < u € G

A CSS (¥, C,,) is arepresentation of a branch in which the formulae are the labelled
formulae of ¥ and the constraints on labels are the elements of C, and ;. Our calculus
extends some principles of BI calculus by adding a second kind of labels (state labels)
and a set of constraints () for state labels.

A CSS (F, G, G) is finite iff F, C, and C; are finite. We define the relation < by:
(F,CCs) < (F',C,Cyiff F C F'and G C C and C; C C.. Moreover we denote
<.'7:f7 Crfa Cvj»> <7 <77 G Cv> when <.'7:f7 eru Cvf> < <.‘7:7 G Cv> holds and <ff7 Crf7 Cvf>

is finite.

Definition 12 (Inconsistent label). Let (F, G, Gs) be a CSS and x be a resource label.
X is inconsistent if there exist two resource labels y and z such that yz < x € (- and
TL: (y,u) € F. A label is consistent if it is not inconsistent.

Proposition 2. Let (F, G, Cs) be a CSS. The following properties hold:

1. Ify<xe ?Landx is a consistent label then y is a consistent label.
2. Ifxy € D,(C,) is a consistent label then x and y are consistent labels.

Figure [1] presents rules of labelled tableaux method for DBI. Let us remark that “c;
and c; are new label constants” means ¢; # c; € Y, \ 4,(C,) and that ”[; is a new label
constant” means [; € Ly \ 4;(C;). We note @ the concatenation of lists. For example
le1;e0;e4] B [esse3] = [er;ense45ea5€3).

Definition 13 (DBI-tableau). A DBI-tableau for a finite CSS {Fo, Gy, Cs,) is a list of
CSS (branches), built inductively according the following rules:

1. The one branch list [(Fo, Gy, Cs,)| is a DBI-tableau for (Fo, Gy, Cs,)

A Modal BI Logic for Dynamic Resource Properties 141

ToAy: (x,u) € F Ay FoAy: (x,u) € F A
({To: (x,u), Ty : (x,u)},0,0) ({F¢: (x,u)},0,0) | ({Fy: (x,u)},0,0)
ToVwy: (x,u) € F v Fovwy: (x,u) € F)
({To: (x,u)},0,0) | ({Ty: (x,u)},0,0) ({F: (x,u),Fy: (x,u)},0,0)
TI: (x,u) € F -
(0.{1 <x},0)
To—y:(xu) € Fandx<yeC . Fo—wy:(xu) € F F)
({F¢: (»u)},0,0) | ({Ty: (yu)},0,0) {To: (ci,u),Fy: (ci,u)}, {x < ¢i},0)
To*y: (x,u) € F - Foxy: (x,u) € Fandyz<x€C)
(T : (cisu), Ty : (cj,u)}, {cic; < x},0) ({Fo: (3,u)},0,0) | ({Fy: (z,u)},0,0)
To—y: (x,u) € Fandxy <xy € G - Fo—y: (x,u) € F -
({Fo: (»u)},0,0) | ({Ty: (xy,u)},0,0) (T« (ciu), Fy : (xci,u)}, {xe; < xei}, 0)
TOO: (x,u) € F FO¢: (x,u) € Fandu<ve (G
o w0 fualy) (For (o0
TOY : (x,u) 6 Fandu<ve(o) F’D¢ ZI(X,M) cF . (¥0)
({To: (x,v)},0,0) ({Fo: (x,1:)},0,{u < 1;})
Note: ¢;, ¢; and [; are new label constants.

Fig. 1. Tableaux rules for DBI

2. Ifthe list T, ® [(F, G, Gs)] @ Ty is a DBI-tableau for {Fo, Gy, Cs,) and

cond((F,Cr, Gs))
<-‘7:17Cr17C?1> | | <-'Tkark7C?k>

is an instance of a rule of Figure [l for which cond({F ,C,, Gs)) is fulfilled, then
the list T, ®[(FUF,GUG,,GUG,)i (FUFRGGUG,,GUG)| @ T is a
DBI-tableau for (Fo, Cyy, Cs,)-

A DBI-tableau for a formula ¢ is a DBI-tableau for ({F¢: (1,11)},{1 < 1} {l; <11 }).

It is possible to prove, by observing rules of the tableaux method for DBI, that new
CSS, obtained by applying a rule, respect the condition (P,) of Definition Then,
for all branches (¥, G, C;) of a DBI-tableau for a formula ¢, as Fo : (1,1;) € F, then
1<1€Gandle D(G).

A first kind of rules concerns (TT), (F —), (Tx), (F—), (T{) and (FO). These rules
introduce new constraints and also new label constants (c;, ¢; and [;), except for (TT)
that only introduces a new constraint. Let us illustrate the (T¢) rule. To apply this rule
on a CSS (F,C, ;) on a labelled formula TOO : (c1,l3) € F, we choose a new label

142 J.R. Courtault and D. Galmiche

which does not appear in ;. For example, we say that /;¢ & ;. Thus, by choosing /¢,
we can apply the rule, getting the new CSS (F U{To: (c1,l10)}, G, GGU{l3 < l10}). We
notice the new state constraint /3 <1 /19 added to the set of constraints. Let us observe
that the (Tx) rule introduces two new resource labels. Concerning the rule (F—x), as
Fy : (xci,u) is added to the set of labelled formulae, xc; has to belong to C, in order to
satisfy the condition (P.s) of Definition[ITl By adding xc; < xc; to C;, xc; belongs to G,
and so (Pess) is satisfied.

A second kind of rules concerns (T —), (Fx), (T—), (FO) and (TO). These rules
have a condition on a closure of label constraints. In order to apply one of these rules
we have to choose an existing label which satisfies the condition and then apply the rule
using it. Otherwise, we cannot apply such rules. We illustrate the (TO) rule: let a CSS
(F,C, G such that TO¢ : (¢1,51) € F. To apply this rule, we have to choose a state
label [such that [; <11 € G,. If we consider that [; < I, € C, then we can decide to apply
the rule using lp, getting the CSS (F U{T¢: (c1,b)}, G, Cs). Let us observe that (Fx)

rule needs to choose two labels y and z such that yz < x € G,.

Definition 14 (Closure condition). A CSS (F, G, G;) is closed if one of the following
conditions holds:

1. To: (x,u) € F,Fo: (y,u) € F andx<y€ G,
2. FL: (x,u) € Fand 1 <x€ G

3. FT:(x,u)eF

4. Fo: (x,u) € F and x is inconsistent

A CSS is open if it is not closed. A DBI-tableau is closed if all its branches are closed.

Definition 15 (DBI-proof). A DBI-proof for a formula ¢ is a DBI-tableau for ¢ which
is closed.

Let us recall that we deal with labelled formulae with two kinds of labels: resource
labels and state labels. Each CSS (branch) contains two sets of constraints, one for
resources and another for states. Moreover the closure of such constraints can be repre-
sented by graphs. There are rules which modify constraint sets (graphs) and introduce
new labels. Other rules have a set of conditions that must be satisfied, by finding labels
satisfying it and then to solve constraints on the constraint graphs.

Let us now consider the formula ¢ = (O(P — ¢ Q) AOP) = O Q and give a DBI-proof
for it. By Definition[I3] the following DBI-tableau [({F¢ : (1,1;)},{1 < 1},{l1 <1 })]
is a DBI-tableau for ¢. We introduce a new representation for a DBI-tableau, which is

[F] C] [G]
F(OP — 0Q) AOP) =+ OQ : (1,1)) 1<1 L<h

We can observe that there are three columns, one for the labelled formula sets of the
CSS of the DBI-tableau ([F]), one for the resource constraint sets of the CSS of the
DBI-tableau ([(;]) and one for the state constraint sets of the CSS of the DBI-tableau
([G5])- By applying some rules, we obtain the following DBI-tableau:

A Modal BI Logic for Dynamic Resource Properties 143

[F] (G [G]
Vi F(OP — 0Q) A OP) =00 : (1,1h) 1<1 L<l
! |
Vo TOP — GQ) AOP : (c1,1h) c1 <ci

V7 FOQ: (e1,1h)

Vo TOP - 00): (e1,1)
\/3 TQP . (C],l])

TP: (c1,h) h<b
I
Vs TP = 00 (c1,h)
- ~ /
FP: (C],lz) \/6 TOQ : (01712)
| |
x TQ: (c1,13) bl
|
FQ: (61,13)
|
X

We decorate a labelled formula with /; to show that we apply a rule on this formula at
step i. We remark that columns ([F], [C;] and [G]) are trees that contain two branches.
There are two branches because there are two CSS in the DBI-tableau. The branches
on the left (resp. right) contain the elements of the first (resp. second) CSS. We also
remark that all CSS are closed (denoted x). The CSS of the left is closed because
TP: (c1,h) € F,FP: (c1,b) € F and ¢; < ¢; € G, Thus, by definition, this DBI-
tableau is a DBI-proof of ((P — 0Q) A OP) -« OQ.

5 Soundness and Completeness Results

The soundness proof uses similar techniques than the ones used in BI for a labelled
tableaux method [4]]. The key point is the notion of realizability of a CSS (F, C, Cs),
that means there exists a dynamic model X and embeddings from resource labels to the
resource set (| -]) and state labels to the state set ([-]) of K such thatif T¢ : (x,u) € F
then |x|, [u] Fg ¢ and if F : (x,u) € F then |x], [u] Fx ¢.

Definition 16 (Realization). Ler (F, ., Cs) be a CSS. A realization of it is a triple
(%K, -], [-1) such that K = (M, [-],F«) is a dynamic resource model, M = (R, ,e,m,C
S22, 1] D(G) = Rand [.] : A(Cs) — S, such that:

- |l]=e

[xoy|=|x]e[y]

If T : (x,u) € F then |x|,[u] Ex 0
IfFO: (x,u) € F then |x|,[u] Fx ©

144 J.R. Courtault and D. Galmiche

- Ifx<yé€ G then |x] C |y]
- Ifu<dv e C then [u] < [v]

We say that a CSS/branch is realizable if there exists a realization of it. We say that a
tableau is realizable if it contains a realizable CSS/branch.

Lemmad4. Let (F,C,,C) bea CSS and (X, |.],[.]) a realization of it. Forallx <y €
G |x| C |y| and forallu <iv € G, [u] =< [v].

Lemma 5. The closed DBI-tableaux are not realizable.

Lemma 6. The expansion rules preserve realizability, i.e., if a rule of the DBI-tableau
method is applied on a labelled formula of a realizable CSS then one of the obtained
CSS is realizable.

Theorem 1 (Soundness). Let ¢ be a formula, if there exists a DBI-proof of ¢ then ¢ is
valid.

Proof. Let T be a DBI-proof of ¢. Let us assume that ¢ is not valid. Then there exits a
dynamic resource model X such that e, s g ¢. If we consider 1] = e and [[;] = s we
obtain a realisation (%, |.],[.]) of the initial CSS ({Fo: (1,41)},{1 < 1},{li < L1}).
Thus, by Lemmal6] one branch of T is realizable. But by Lemma[3lit is contradictory,
because as ‘7 is a DBI-proof, then 7 is closed. Thus ¢ is valid.

Before to study completeness we consider the countermodel extraction for DBI tableaux
method. The main idea consists in transforming resource and state constraints into a
dynamic resource monoid, from a branch (¥, C,, ;) which is not closed.

In order to obtain a countermodel, this transformation has to verify two properties:
if Td: (x,u) € F thenx,ulFg ¢ and if Fd : (x,u) € F then x,u F ¢. In order to satisfy
them, our method needs to saturate labelled formulae (to obtain a Hintikka CSS), that
means, for instance, if TOd : (x,u) € F then we want that x,u = % U, so for all state
labels v such that u <t v € G, T : (x,v) € F has to be verified.

Definition 17 (Hintikka CSS). A CSS (¥, G, G;) is a Hintikka CSS if for any formula
0,y € L and any label x,y € L, and u,v € Ly:

1. 'Ifq):(x,u)gjforlﬁ‘q):(y,ﬂgforxgygza

2. FL: (qu) € Forl <x¢& ¢

3 FT:(xu) g F

4. Fo: (x,u) & F orx is consistent

5. IfTL: (x,u) € F then 1 <x€ G,

6. IFTOAY: (x,u) € F then T : (x,u) € F and Ty : (x,u) € F

7. UFOAY: (x,u) € F thenFo: (x,u) € F orFy: (x,u) € F

8 IfToOVy: (x,u) € F thenTo: (x,u) € F or Ty : (x,u) € F

9. IfFOVV: (x,u) € F thenFo: (x,u) € F and Fy : (x,u) € F

10. IfTO — y: (x,u) € F thenVy € L, x<y € G = Fo: (y,u) € F or Ty : (y,u) € F

A Modal BI Logic for Dynamic Resource Properties 145

11. IfFO—y: (x,u) € F thenIy e L, x<y€ G and T : (y,u) € F and Fy : (y,u) €
F

12. If To* vy : (x,u) € F then Iy,z € L, yz<x € G, and To : (y,u) € F and Ty :
(zu) e F _

13. IfFo*y: (x,u) € F thenVy,z€ Ly, yz<x€ G =Fo: (v,u) € F orFy: (z,u) € F

14. If To—y: (x,u) € F thenVy € L., xy € D,(C) = Fo: (y,u) € F or Ty : (xy,u) €
F

15. If Fo - : (x,u) € F then 3y € L,, xy € D,(C;) and T : (y,u) € F and Fy :
(xy,u) € F _

16. If TOG : (x,u) € F thenIv € Ly, u<ive G and T : (x,v) € F

17. IfFOO : (x,u) € F thenVv € L, u<ive G = Fo: (x,v) € F

18 IfTOG : (x,u) € F thenVv e L, u<ive G =To: (x,v) € F

19. IfFO0: (x,u) € F thenIv € L, u v e G andFo: (x,v) € F

The conditions (1), (2), (3) and (4) of Definition certify that a Hintikka CSS is
not closed. Others conditions certify that all labelled formulae of a Hintikka CSS are
saturated. Let us now define a function € that allows us to extract a countermodel from
a Hintikka CSS.

Definition 18 (Function Q). Let (F, G, G) be a Hintikka CSS and Cr be the restric-
tion of G, to constraints including only consistent labels. The function Q associates to
(F, G, G) atriple Q(F, G, G)) = (M, [-],Fx) where M = (R, e,e,m,C,S, <), such
that:

- R= Q)r(crw) U {TE}, with T ¢ Q)r(cr>

- S:/qv(cv)

-e=1 .

— e s defined by: Vry,r € R{ rierz=rier ifn °orn € Dr(Cro)
’ rier=Tm otherwise

-nCniffri<neGeorn=m

-s12Xsiffs1<dn el

(r,s) € [P]iff (r=n)or (A €R, ¥ CTrandTP: (r,s) € F)

Let (F,C, Cs) be a CSS and x € D,(C;). We remark that x is a consistent label resource
if and only if x € D,(G). Indeed, if x € D,(C,) then by Corollary[Il x < x € (. Thus,
as x is consistent, all resource labels and sub-labels of x are consistent by Proposition[2]
Thus x < x € Gy and x € D,(Crq). Now, if x € D,(C,,) then there exist xy < 7 € G
or 7 < xy € G- Therefore x is consistent otherwise xy < z & Gy 0r 2 < Xy € Crp-

Lemma 7. Let (F,C,, C) be a Hintikka CSS and Q((F , G, Gs)) = (M, [-],E«) where
M = (R,e,e,m,C.,S,=<). (M,[],Fx) is a dynamic resource model.

Lemma 8. Let (F, G, Cs) be a Hintikka CSS. Let Q((F , G, Gs)) = (M, [-],E x) where
M = (R,e,e,m,C,S,X). For any formula ¢ the following properties hold:

1. T, s ':y(¢
2. IfFo: (r,s) € F and r consistent then r,s Hg ¢
3. If T : (r,s) € F and r consistent then r,s Ex ¢

146 J.R. Courtault and D. Galmiche

Lemma 9. Let (F,C,, C;) be a Hintikka CSS such that Fo : (1,s) € F. ¢ is not valid.

Proof. 1f the resource label 1 is inconsistent, then it is contradictory because F¢ :
(1,s) € ¥ and by condition (4) of Definition [[7] Thus 1 is consistent. By Lemma [7]
QUF,C,C)) is a dynamic resource model. By Lemma[§] e,s g ¢ in this model.
Thus Q({F, G-, G;)) is a countermodel of ¢ and then ¢ is not valid.

The proof of completeness consists in building a Hintikka CSS from a CSS which
cannot be closed, in the spirit of the proof developed for BBI [§]]. Then we need a fair
strategy and a oracle which contains all finite consistent (not closed but saturated) CSS.

Definition 19 (Fair strategy). A fair strategy is a labelled formulae sequence (S;F; :
(xi,ui))ien in {T,F} x L x L, X Ly such that any labelled formula occurs infinitely
many times in this sequence, that is {i € N | S;F; : (x;,u;) = SF : (x,u)} is infinite for
any SF : (x,u) € {T,F} x LX L, X L.

Proposition 3. There exists a fair strategy.
The main argument is that the set of labelled formulae is countable.
Definition 20. Let P be a set of CSS.

1. P is g-closed if (F,Cr,Cs) € P holds whenever {F,C,,Cs) < (F',C.,Cl) and
(F',CL.C!) € P hold,

2. P is of finite character if (¥, C;, Gs) € P holds whenever (F¢,Cry, Csy) € P holds
for every (F¢,Cry, Csp) <y (F, Cr, G)-

3. P is saturated if for any (F, Gy, Cs) € P and any instance

cond(F, G, C)
(F,C1,Gr) | oo | (Fas G Gok)

of a rule of Figurelll if cond(F , Gy, G) is fulfilled then (F U F;, ;U G, GU Gsi) €
P for at least one i € {1,...,k}.

Definition 21 (Oracle). An oracle is a set of non closed CSS which is <-closed, of finite
character and saturated.

Lemma 10. There exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau.

This oracle is the set of all CSS such that there exists no closed DBI-tableau for their
finite sub-CSS (<). Let us assume that there exists no DBI-proof of formula ¢ and
show that ¢ is not valid by constructing a Hintikka CSS. Let us note that ¢ denotes the
formula for which we are constructing a Hintikka CSS and ¢ denotes any formula. Let
Ty a initial DBI-tableau for @, we have

L %= [({Fo: (L,0)} {1 <1},{li <L})]
2. ‘I cannot be closed

A Modal BI Logic for Dynamic Resource Properties 147

By Lemmal[IQ there exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau. Let P be such an oracle. By hypothesis we have ({Fo :
(I, } {1 <1},{L < 11}) € P. By Proposition Bl there exists a fair strategy. Let §
be such a strategy. We denoted S;F; : (x;,u;) the i formula of .. We built a sequence
(Fi, Griy Gsi)oxi as follows:

- (%0, Go: Go) = ({Fo: (1,0} {1 <1}, {li < lh})

- I (FiU{SiF; : (xi,u0)}, Griy Gi) € P then (Fiir, Grivr, Givt) = (Fis i Gsi)

= I (FU{SiFi: (xi,ui) }, iy Gi) € Pthen (Fist, Griyrs Goiyr) = (FiU{SiF; : (xi,u:) U
F.,CiU Cre, Csi U Gse) such that F,, ;. and G, are determined by:

[F] F, [Ge | Ge |
Flo—wv|| {To: (a,u;),Fy: (a,ui)} | {xi<a} 0
T| oxy || {To: (a,u;), Ty : (b,u;)} | {ab < x;} 0
Flo—y [[{To: (a,u;),Fy: (xia,u;) H{xia <xa}| 0
T 1 0 T<x) | 0
T| ¢Oo {To: (xi,c)} 0 {ui<c}
F| Do {Fo: (x;,c)} 0 {ui<c}
Otherwise 0 0 0

with a = Citl, b= Cit2 and c = l,‘+2.
Proposition 4. For any i € N, the following properties hold:

CFo:(Lh)eF, 1<1€CGyandly <l € G
- Fi € Fiv1, Gi € Griyr and Gs; C Gyin

AFi GisGiYo<i €P

. ﬂr(Cr{) - {1,6‘1,62,...,6‘2,‘}

- A(Csi) S{li, byl }

L AN W N~

We now consider the limit CSS (%c, Creo, Csoo) Of the sequence (F:, Gri, Gs;)oi defined
by:

Fo=J% and G..=JGi and Go.=|JGCi
Proposition 5. We have (Feo, Creo, Csoo) € P and for all labelled formulae So : (x,u), if
(Fo U{SO: (x,u) }, Groo, Cseo) € P then S : (x,u) € Foo
Lemma 11. The limit CSS is a Hintikka CSS.

Theorem 2 (Completeness). Let ¢ be a formula, if ¢ is valid then there exists a DBI-
proof for @.

Proof. We suppose that there is no DBI-proof of ¢ and show that ¢ is not valid. Our
method allows us to build a limit CSS that is a Hintikka CSS, by Lemmal[ITl By property
1 of Propositiond Fo : (1,1;) € ;. By Lemma[0] o is not valid.

148 J.R. Courtault and D. Galmiche

6 Conclusion

We have defined and studied a modal extension of BI, called DBI, that allows us to
express dynamic properties about resources. We propose a Kripke semantics for DBI
and a labelled tableaux method that is proved sound and complete w.r.t. this semantics.
Compared to previous works on proof-theory in BI, the labelled tableaux method for
DBI deals not only with a so-called resource graph but also with a state graph. Moreover
we show how we can generate countermodels in case of non-validity.

Future works will be devoted to the study of other extensions of BI with other modal-
ities such that fragments of SCRP/MBI [12]], in order to mix dynamic resources and
processes, and also of the semantics based on Petri nets for such extensions.

References

1. Biri, N., Galmiche, D.: A Separation Logic for Resource Distribution. In: Pandya, PK.,
Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 23-37. Springer, Heidelberg
(2003)

2. Engberg, U., Winskel, G.: Completeness results for Linear Logic on Petri nets. Annals of
Pure and Applied Logic 86, 101-135 (1997)

3. Galmiche, D., Méry, D.: Tableaux and Resource Graphs for Separation Logic. Journal of
Logic and Computation 20(1), 189-231 (2010)

4. Galmiche, D., Méry, D., Pym, D.: The semantics of BI and Resource Tableaux. Math. Struct.
in Comp. Science 15(6), 1033—1088 (2005)

5. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1-102 (1987)

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576-580 (1969)

7. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: 28th
ACM Symposium on Principles of Programming Languages, POPL 2001, London, UK,
pp. 14-26 (2001)

8. Larchey-Wendling, D.: The Formal Proof of the Strong Completeness of Boolean BI (2012),
http://www.loria.fr/~larchey/BBI

9. Larchey-Wendling, D., Galmiche, D.: The Undecidability of Boolean BI through Phase Se-
mantics. In: 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010,
Edinburgh, UK, pp. 147-156 (July 2010)

10. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)

11. O’Hearn, PW., Pym, D.J.: The Logic of Bunched Implications. Bulletin of Symbolic
Logic 5(2), 215-244 (1999)

12. Pym, D.J., Tofts, C.: Systems modelling via resources and processes: Philosophy, calculus,
semantics, and logic. Electronic Notes in Theoretical Computer Science 172, 545-587 (2007)

13. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications. Applied
Logic Series, vol. 26. Kluwer Academic Publishers (2002)

14. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: IEEE Sympo-
sium on Logic in Computer Science, Copenhagen, Danemark, pp. 55-74 (July 2002)

http://www.loria.fr/~larchey/BBI

	A Modal BI Logic for Dynamic Resource Properties
	Introduction
	The DBI logic
	Expressiveness of DBI
	A proof System for DBI
	Labels for Resources and States
	A Labelled Tableaux Method for DBI

	Soundness and Completeness Results
	Conclusion

