
A Modal BI Logic for Dynamic Resource Properties�

J.R. Courtault and D. Galmiche

Université de Lorraine – LORIA UMR 7503
Campus Scientifique, BP 239
Vandœuvre-lès-Nancy, France

Abstract. The logic of Bunched implications (BI) and its variants or extensions
provide a powerful framework to deal with resources having static properties. In
this paper, we propose a modal extension of BI logic, called DBI, which allows
us to deal with dynamic resource properties. After defining a Kripke semantics
for DBI, we illustrate the interest of DBI for expressing some dynamic properties
and then we propose a labelled tableaux calculus for this logic. This calculus is
proved sound and complete w.r.t. the Kripke semantics. Moreover, we also give a
method for countermodel generation in this logic.

1 Introduction

The notion of resource is an important notion in computer science. The location, owner-
ship, access to and, indeed, consumption of, resources are central concerns in the design
of systems, such as networks, and in the design of programs, which access memory and
manipulate data structures like pointers. We are interested in studying such notions on
resources through logics with an emphasis on usable semantics and proof-theory. In this
context we can mention Linear Logic (LL) [5] that focuses on resource consumption
and the logic of Bunched Implications (BI) [13] that mainly focuses on resource sharing
and separation. The BI logic and its variants, like Boolean BI (BBI) [11,13], can be seen
as the logical kernel of so-called separation logics, that provides a concrete way of un-
derstanding the connectives in the context of program verification [7,14]. Some recent
results on BI and BBI concern new semantics [4], proof-search with labelled tableaux
and resource graphs [3,4] and (un)decidability of these logics [4,9]. Some extensions
or refinements have led to separation logics, like BI’s pointer logic (PL) [7] that allows
us to express properties on pointers or BiLoc [1] that is based on resource trees and
captures the notion of place. In this context MBI logic [12] extends BI with modalities
and a calculus à la Hennessy-Milner [10] dealing with processes and resources.

We can remark that two kinds of dynamic are captured by BI, BBI and their exten-
sions. On the one hand, there are logics that transform resources into other resources,
which is a first kind of dynamic. On the other hand, there are logics where properties of
resources can change (called here dynamic properties) or not (called here static prop-
erties). For example, in BI logic the resource properties are static because if a resource
satisfies a property, it will always satisfies this property. The dynamic, that corresponds

� This work is supported by the ANR grant DynRes on Dynamic Resources and Separation and
Update Logics (project no. ANR-11-BS02-011).

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 134–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Modal BI Logic for Dynamic Resource Properties 135

to the transformation of resources, is captured in LL by proofs and in PL by a calculus
à la Hoare [6]. Moreover in MBI, the dynamic is also based on resource transformation
because of a calculus à la Hennessy-Milner with judgements of the form R,E

a→ R′,E ′,
which means that a process E performs an action a on a resource R in order to obtain
a resource R′ and then becomes a process E ′. But the modalities à la Hennessy-Milner
can only express properties on R′ and E ′, directly at the next state, but not on any reach-
able resource and process (or state), knowing that reachable means after performing any
action.

In this paper, we are interested in expressing some dynamic properties on resources
directly at level of formulae, on future states (and not only on the next ones) and in
dealing with interacting systems. Then we define a modal extension of BI, called DBI
(Dynamic Bunched Implications logic), in order to model some dynamic properties of
resources. We define a Kripke semantics for this logic, which is an extension of Kripke
semantics for BI with state constraints (a set of states with a preorder) introduced in
addition to resource constraints. We also give a labelled tableaux calculus in the spirit
of works on BI logic [3,4] but dealing with both resource graphs and state graphs.
This calculus is proved sound and complete w.r.t. this semantics, with generation of
countermodels in case of non-validity in DBI.

2 The DBI logic

BI logic is a logic that expresses sharing and separation properties on resources [11,13].
We present here a modal extension of BI, called DBI, which allows us to express some
dynamic properties on resources. The language L of DBI is obtained by adding two
modalities � and ♦ to the BI language [13].

Let Prop be a countable set of propositional symbols, the language L of DBI is
defined as follows, where p ∈ Prop:

X ::= p | � | ⊥ | I | X ∧X | X ∨X | X → X | X ∗X | X −∗X | ♦X |�X

The negation is defined by: ¬X ≡X →⊥. We now define a Kripke semantics that can be
seen as an extension of the Kripke semantics of BI [4] based on a resource monoid. In
the case of DBI we consider a dynamic resource monoid with an explicit inconsistency,
and also a preorder set of states with an accessibility relation between states.

Definition 1 (Dynamic resource monoid). A dynamic resource monoid is a structure
M = (R,•,e,π,�,S,) such that:

– R is a set of resources and S is a set of states
– e ∈ R and π ∈ R
– • : R×R → R such that:

- Neutral element: ∀r ∈ R, r • e = e• r = r
- Associativity: ∀r1,r2,r3 ∈ R, r1 • (r2 • r3) = (r1 • r2)• r3
- Commutativity: ∀r1,r2 ∈ R, r1 • r2 = r2 • r1

– � ⊆ R×R is a preorder (on resources):
- Reflexivity: ∀r ∈ R, r � r
- Transitivity: ∀r1,r2,r3 ∈ R, if r1 � r2 and r2 � r3 then r1 � r3

136 J.R. Courtault and D. Galmiche

– π ∈ R is the greatest element: ∀r ∈ R, r � π and ∀r ∈ R, r •π = π.
– ⊆ S× S is a preorder (on states)
– Compatibility (P): ∀r1,r2,r3 ∈ R, if r1 � r2 then r1 • r3 � r2 • r3

We note P(E) the powerset of the set E , namely the set of sets built from E . We call
e the unit resource (empty resource), π the inconsistent resource and • the resource
composition. A preordered set (S,) is added to the Kripke’s BI semantics with S that
can be viewed as the states of a system and as the accessibility (through transitions)
of states of the system.

Definition 2 (Dynamic interpretation). A dynamic interpretation is a function �·� :
Prop → P(R× S), that verifies the following properties, for any s ∈ S and p ∈ Prop:

– Monotonicity (K): ∀r,r′ ∈ R such that r � r′, if (r,s) ∈ �p� then (r′,s) ∈ �p�
– Inconsistency (BC): ∀r ∈ R such that π � r, (r,s) ∈ �p�

As we see the dynamic interpretation makes the resource properties non static: the in-
terpretation of a propositional symbol is not only a set of resources (as BI), but a set of
pairs of resources and states.

Definition 3 (Dynamic resource model). A dynamic resource model is a triple K =
(M ,�·�, �K) such that M is a dynamic resource monoid, �·� is a dynamic interpretation
and �K is a forcing relation on R× S×L defined as follows:

– r,s �K p iff (r,s) ∈ �p�
– r,s �K I iff e � r
– r,s �K � always
– r,s �K ⊥ iff π � r
– r,s �K φ∧ψ iff r,s �K φ and r,s �K ψ
– r,s �K φ∨ψ iff r,s �K φ or r,s �K ψ
– r,s �K φ → ψ iff ∀r′ ∈ R · (r � r′ and r′,s �K φ) ⇒ r′,s �K ψ
– r,s �K φ∗ψ iff ∃r′,r′′ ∈ R · r′ • r′′ � r and r′,s �K φ and r′′,s �K ψ
– r,s �K φ−∗ψ iff ∀r′ ∈ R · r′,s �K φ ⇒ r • r′,s �K ψ
– r,s �K ♦φ iff ∃s′ ∈ S · s s′ and r,s′ �K φ
– r,s �K �φ iff ∀s′ ∈ S · s s′ ⇒ r,s′ �K φ

The definition of the forcing relation is an extension of the BI forcing realtion with the
cases for � and ♦. For instance r,s �K ♦φ means that a resource r at state s satisfies
♦φ if a state s′ can be reached from the state s (s s′) such that r in state s′ satisfies φ
(r,s′ �K φ). Now we define the notion of validity.

Definition 4 (Validity). A formula φ is valid, denoted � φ, if and only if e,s �K φ for
all dynamic resource models K (and all states s ∈ S).

The notation φ � ψ means that for all resources r and all states s of any dynamic
resource model K , if r,s �K φ then r,s �K ψ.

We give two lemmas that hold for all dynamic resource models K , all formulae φ, all
resources r,r′ ∈ R and all states s′ ∈ S.

Lemma 1 (Monotonicity). If r,s �K φ and r � r′ then r′,s �K φ.

Lemma 2 (Inconsistency). We have π,s �K φ.

A Modal BI Logic for Dynamic Resource Properties 137

3 Expressiveness of DBI

We have previously introduced a semantics for modelling resources having dynamic
properties. In this section we emphasize the interest of this modal extension of BI by
illustrating it through some simple examples.

The first example deals with the management of resources with dynamic properties.
In BI logic the propositional symbols are considered as static descriptions/properties of
resources. But, we know that resource properties are not always static. For example, if
we consider the price of gold and silver, it is a dynamic property depending not only on
the resource. Let us denote rg the resource ”one ounce of gold” and rs the resource ”one
ounce of silver”. Propositional symbols Pgy and Psy are prices of rg and rs on January
1st of the year y. Moreover, sy denotes the state of the market on January 1st of the year
y. With DBI we are able to express the evolution of the silver and gold price:

rg • rs,s1970 �K (Pg1970 ∗Ps1970)∧♦(Pg2012 ∗Ps2012)

It means that on January 1st of the year 1970 (s1970), a resource composed by one ounce
of gold and one ounce of silver (rg • rs) has two properties: it could be decomposed into
two resources respectively satisfying the properties Pg1970 and Ps1970 (Pg1970 ∗Ps1970) and,
in a future state, it could be decomposed into two resources respectively satisfying the
properties Pg2012 and Ps2012 (Pg2012 ∗Ps2012).

The second example illustrates how with DBI and a dynamic resource monoid we
can deal with properties on interacting systems. A dynamic resource monoid can be
viewed as two interacting systems. Indeed a resource monoid can model a first system,
where resources are states of this system and the preoder on resources is the state reach-
ability of this system [2]. Furthermore, the dynamic part of a dynamic resource monoid
(set of states with a preorder), can be viewed as an automaton and easily models a sec-
ond system. Moreover, the dynamic interpretation can be viewed as the result of the
interaction of these systems. For example, (r,s) ∈ �p� can express that, if a first system
is in state r and a second system is in state s then their interaction satisfies the property
p. Here the word interaction does not mean that one of these systems influences the
second one: the preorder on resources does not depend on states and the preorder on
states does not depend on resources. Then the interaction (r,s) ∈ �p� means that there
are two free (non influencing) systems which can perform together an action, which
satisfies the property p if the first system is in state r and the second system is in state s.

Let us consider a message sent in a network and modelled with a resource monoid.
We consider only five states (resources) R = {e,msent ,mpassing,mdelivered ,π}, where e is
the state with no message, π is the state with an error that occurs in the system, msent is
the state where the message is sent, mpassing is the state where the message is passing in
transit and mdelivered is the state where the message is delivered. The relation �, where
reflexivity and transitivity are not represented, is:

e

msentmpassingmdelivered

π

138 J.R. Courtault and D. Galmiche

In a first step, there is no message (e). Then the message is created and sent (msent).
In a third step, it is passing in transit (mpassing) and then, in a fourth step, it is delivered
(mdelivered). As we can remark, mpassing � msent , but mpassing is the next state of msent

and it is not a mistake. As msent can reach mpassing then we aim the properties of mpassing

to be satisfied by the resource msent . In other words, if a resource r satisfies a property
p, then all resources that can reach r satisfy p. This is the property (K) of Definition 2.
In this example, we only consider one message and then we define • by (e• r = r) and
(r • r′ = π if r �= e and r′ �= e), but it is possible to consider states composed by more
than one message. We remark that π is the biggest resource (by definition of dynamic
resource monoid), so when an error occurs (π), all states are reachable: it is considered
that when an error occurs, it is impossible to predict the behavior of the system.

Now we define the following service as a second system, where reflexivity and tran-
sitivity of are not represented. It contains four states S = {s0,s1,s2,s3} with s0 as
initial state and in the state s3 our service reads the delivered messages.

s0 s1

s2

s3

Having defined a dynamic resource monoid we are able to express that when the
message is sent, it is possible that our service read this message, that is: msent ,s0 �K
♦Pmread , where Pmread is the propositional symbol ”message read” that occurs when m is
delivered and the service is in state s3: �Pmread � = {(r,s3) | mdelivered � r}.

We have mdelivered ,s3 �K Pmread . As s0 s3 then mdelivered ,s0 �K ♦Pmread (the DBI
modalities encode the reachability of states). As msent can reach mdelivered (mdelivered �
msent) then msent ,s0 �K ♦Pmread (DBI monotonicity encodes the resource reachability).

4 A proof System for DBI

In this section, we propose a proof system for DBI, in the spirit of previous works on
labelled proof system for BI with resource graphs [4]. We introduce some rules to deal
with modalities and also the notions of state labels and constraints, in order to capture
some dynamic aspects.

4.1 Labels for Resources and States

In labelled tableaux method for BI [4], there are labels and constraints in order to
capture some semantic information inside the proof system. Labels are related to the
resource set (R), a label composition is related to the resource composition (•) and rela-
tions on labels named label constraints are related to �. In DBI, the resource monoids
are dynamic and then there are two sets (for resources and states) and two relations (on
resources and states). Thus we introduce a new kind of labels and constraints to deal
with states. Let us now define labels and constraints for DBI.

A Modal BI Logic for Dynamic Resource Properties 139

Definition 5 (Resource labels). Lr is a set of resource labels built from a constant 1,
an infinite countable set of constants γr = {c1,c2, ...} and a function denoted ◦,

X ::= 1 | ci | X ◦X

where ci ∈ γr. Moreover ◦ is a function on Lr that is associative, commutative and 1
is its unit. A resource constraint is an expression of the form x ≤ y where x and y are
resource labels.

For example the resource label c1 ◦ 1 ◦ c2 ◦ c1 is equal to the resource label c1 ◦ c1 ◦ c2.
We denote xy the resource label x◦ y. Moreover we say that x is a resource sub-label of
y if and only if there exists z such that x ◦ z = y. The set of resource sub-labels of x is
denoted E(x).

Definition 6 (State labels). Ls is an infinite countable set of state labels (Ls={l1, l2, ...}).
A state constraint on such labels is an expression of the form x � y, where x and y are
state labels.

Definition 7 (Domain). Let Cr be a resource constraints set, the domain of Cr, denoted
Dr(Cr), is the set of all resource sub-labels appearing in Cr. In particular: Dr(Cr) =⋃

x≤y∈Cr
(E(x)∪E(y)).

Definition 8 (Alphabet). The alphabet of a set of resource / state constraints is the set
of all label constants appearing in Cr / Cs.

In particular we have Ar(Cr) = γr ∩Dr(Cr) and As(Cs) =
⋃

u�v∈Cs
{u,v}.

We can remark that � is reflexive, transitive and compatible. Moreover, is reflexive
and transitive. These properties have to be captured by the constraint sets. For that we
introduce a notion of closure of constraints.

Definition 9 (Closure of resource constraints). Let Cr be a set of resource constraints,
the closure of Cr (denoted Cr) is the least relation closed under the following rules such
that Cr ⊆ Cr

x ≤ y y ≤ z 〈tr〉
x ≤ z

xy ≤ xy 〈dr〉
x ≤ x

ky ≤ ky x ≤ y 〈cr〉
kx ≤ ky

x ≤ y 〈lr〉
x ≤ x

x ≤ y 〈rr〉
y ≤ y

We can remark that as these rules do not introduce new resource label constants, then
Ar(Cr) = Ar(Cr).

Definition 10 (Closure of state constraints). Let Cs be a set of state constraints, the
closure of Cs (denoted Cs) is the least relation closed under the following rules such
that Cs ⊆ Cs:

x � y 〈ls〉x � x
x � y 〈rs〉y � y

x � y y � z 〈ts〉x � z

As illustration we consider Cs = {l1 � l2, l2 � l3, l3 � l4}. We have l1 � l2 ∈ Cs because
Cs ⊆ Cs and we have l1 � l4 ∈ Cs because

l1 � l2 l2 � l3 〈ts〉
l1 � l3 l3 � l4 〈ts〉

l1 � l4

140 J.R. Courtault and D. Galmiche

Proposition 1. Let Cr be a set of resource constraints, the following properties hold:

1. If kx ≤ y ∈ Cr then x ≤ x ∈ Cr

2. If x ≤ ky ∈ Cr then y ≤ y ∈ Cr

Corollary 1. Let Cr be a set of resource constraints, x ∈ Dr(Cr) iff x ≤ x ∈ Cr.

Lemma 3 (Compactness). Let Cr (resp. Cs) be a (possibly infinite) set of resource
constraints (resp. state constraints). If x ≤ y ∈ Cr (resp. u � v ∈ Cs) then there exists a
finite set C f such that C f ⊆ Cr (resp. C f ⊆ Cs) and x ≤ y ∈ C f (resp. u � v ∈ C f).

4.2 A Labelled Tableaux Method for DBI

We now define a labelled tableaux method for DBI in the spirit of previous works for
BI [4] and BBI [8].

Definition 11 (Labelled formula / CSS). A labelled formula is a 4-uplet (S,φ,x,u) ∈
{T,F}×L×Lr×Ls written Sφ : (x,u). A constrained set of statements (CSS) is a triple
〈F ,Cr,Cs〉, where F is a set of labelled formulae, Cr is a set of resource constraints
and Cs is a set of state constraints, such that the following property, called (Pcss), holds:
if Sφ : (x,u) ∈ F then x ≤ x ∈ Cr and u � u ∈ Cs.

A CSS 〈F ,Cr,Cs〉 is a representation of a branch in which the formulae are the labelled
formulae of F and the constraints on labels are the elements of Cr and Cs. Our calculus
extends some principles of BI calculus by adding a second kind of labels (state labels)
and a set of constraints (Cs) for state labels.

A CSS 〈F ,Cr,Cs〉 is finite iff F , Cr and Cs are finite. We define the relation � by:
〈F ,Cr,Cs〉 � 〈F ′,C ′

r ,C ′
s〉 iff F ⊆ F ′ and Cr ⊆ C ′

r and Cs ⊆ C ′
s . Moreover we denote

〈F f ,Cr f ,Cs f 〉 � f 〈F ,Cr,Cs〉 when 〈F f ,Cr f ,Cs f 〉 � 〈F ,Cr,Cs〉 holds and 〈F f ,Cr f ,Cs f 〉
is finite.

Definition 12 (Inconsistent label). Let 〈F ,Cr,Cs〉 be a CSS and x be a resource label.
x is inconsistent if there exist two resource labels y and z such that yz ≤ x ∈ Cr and
T⊥ : (y,u) ∈ F . A label is consistent if it is not inconsistent.

Proposition 2. Let 〈F ,Cr,Cs〉 be a CSS. The following properties hold:

1. If y ≤ x ∈ Cr and x is a consistent label then y is a consistent label.
2. If xy ∈ Dr(Cr) is a consistent label then x and y are consistent labels.

Figure 1 presents rules of labelled tableaux method for DBI. Let us remark that ”ci

and c j are new label constants” means ci �= c j ∈ γr \Ar(Cr) and that ”li is a new label
constant” means li ∈ Ls \As(Cs). We note ⊕ the concatenation of lists. For example
[e1;e2;e4]⊕ [e4;e3] = [e1;e2;e4;e4;e3].

Definition 13 (DBI-tableau). A DBI-tableau for a finite CSS 〈F0,Cr0 ,Cs0〉 is a list of
CSS (branches), built inductively according the following rules:

1. The one branch list [〈F0,Cr0 ,Cs0〉] is a DBI-tableau for 〈F0,Cr0 ,Cs0〉

A Modal BI Logic for Dynamic Resource Properties 141

Tφ∧ψ : (x,u) ∈ F
〈T∧〉〈{Tφ : (x,u),Tψ : (x,u)}, /0, /0〉

Fφ∧ψ : (x,u) ∈ F
〈F∧〉〈{Fφ : (x,u)}, /0, /0〉 | 〈{Fψ : (x,u)}, /0, /0〉

Tφ∨ψ : (x,u) ∈ F
〈T∨〉〈{Tφ : (x,u)}, /0, /0〉 | 〈{Tψ : (x,u)}, /0, /0〉

Fφ∨ψ : (x,u) ∈ F
〈F∨〉〈{Fφ : (x,u),Fψ : (x,u)}, /0, /0〉

TI : (x,u) ∈ F
〈TI〉〈 /0,{1 ≤ x}, /0〉

Tφ → ψ : (x,u) ∈ F and x ≤ y ∈ Cr 〈T→〉〈{Fφ : (y,u)}, /0, /0〉 | 〈{Tψ : (y,u)}, /0, /0〉
Fφ → ψ : (x,u) ∈ F

〈F→〉〈{Tφ : (ci,u),Fψ : (ci,u)},{x ≤ ci}, /0〉

Tφ∗ψ : (x,u) ∈ F
〈T∗〉〈{Tφ : (ci,u),Tψ : (c j,u)},{cic j ≤ x}, /0〉

Fφ∗ψ : (x,u) ∈ F and yz ≤ x ∈ Cr 〈F∗〉〈{Fφ : (y,u)}, /0, /0〉 | 〈{Fψ : (z,u)}, /0, /0〉

Tφ−∗ψ : (x,u) ∈ F and xy ≤ xy ∈ Cr 〈T−∗〉〈{Fφ : (y,u)}, /0, /0〉 | 〈{Tψ : (xy,u)}, /0, /0〉
Fφ−∗ψ : (x,u) ∈ F

〈F−∗〉〈{Tφ : (ci,u),Fψ : (xci,u)},{xci ≤ xci}, /0〉

T♦φ : (x,u) ∈ F
〈T♦〉〈{Tφ : (x, li)}, /0,{u � li}〉

F♦φ : (x,u) ∈ F and u ≤ v ∈ Cs 〈F♦〉〈{Fφ : (x,v)}, /0, /0〉

T�φ : (x,u) ∈ F and u ≤ v ∈ Cs 〈T�〉〈{Tφ : (x,v)}, /0, /0〉
F�φ : (x,u) ∈ F

〈F�〉〈{Fφ : (x, li)}, /0,{u � li}〉

Note: ci, c j and li are new label constants.

Fig. 1. Tableaux rules for DBI

2. If the list Tm ⊕ [〈F ,Cr,Cs〉]⊕Tn is a DBI-tableau for 〈F0,Cr0 ,Cs0〉 and

cond(〈F ,Cr,Cs〉)
〈F1,Cr1 ,Cs1〉 | ... | 〈Fk,Crk ,Csk〉

is an instance of a rule of Figure 1 for which cond(〈F ,Cr,Cs〉) is fulfilled, then
the list Tm ⊕ [〈F ∪F1,Cr ∪Cr1 ,Cs ∪Cs1〉; ...;〈F ∪Fk,Cr ∪Crk ,Cs ∪Csk〉]⊕Tn is a
DBI-tableau for 〈F0,Cr0 ,Cs0〉.

A DBI-tableau for a formula φ is a DBI-tableau for 〈{Fφ : (1, l1)},{1 ≤ 1},{l1 � l1}〉.
It is possible to prove, by observing rules of the tableaux method for DBI, that new
CSS, obtained by applying a rule, respect the condition (Pcss) of Definition 11. Then,
for all branches 〈F ,Cr,Cs〉 of a DBI-tableau for a formula φ, as Fφ : (1, l1) ∈ F , then
1 ≤ 1 ∈ Cr and 1 ∈ Dr(Cr).

A first kind of rules concerns 〈TI〉, 〈F→〉, 〈T∗〉, 〈F−∗〉, 〈T♦〉 and 〈F�〉. These rules
introduce new constraints and also new label constants (ci, c j and li), except for 〈TI〉
that only introduces a new constraint. Let us illustrate the 〈T♦〉 rule. To apply this rule
on a CSS 〈F ,Cr,Cs〉 on a labelled formula T♦φ : (c1, l3) ∈ F , we choose a new label

142 J.R. Courtault and D. Galmiche

which does not appear in Cs. For example, we say that l10 �∈ Cs. Thus, by choosing l10,
we can apply the rule, getting the new CSS 〈F ∪{Tφ : (c1, l10)},Cr,Cs∪{l3 � l10}〉. We
notice the new state constraint l3 � l10 added to the set of constraints. Let us observe
that the 〈T∗〉 rule introduces two new resource labels. Concerning the rule 〈F−∗〉, as
Fψ : (xci,u) is added to the set of labelled formulae, xci has to belong to Cr in order to
satisfy the condition (Pcss) of Definition 11. By adding xci ≤ xci to Cr, xci belongs to Cr

and so (Pcss) is satisfied.
A second kind of rules concerns 〈T→〉, 〈F∗〉, 〈T−∗〉, 〈F♦〉 and 〈T�〉. These rules

have a condition on a closure of label constraints. In order to apply one of these rules
we have to choose an existing label which satisfies the condition and then apply the rule
using it. Otherwise, we cannot apply such rules. We illustrate the 〈T�〉 rule: let a CSS
〈F ,Cr,Cs〉 such that T�φ : (c1, l1) ∈ F . To apply this rule, we have to choose a state
label l such that l1 � l ∈ Cs. If we consider that l1 ≤ l2 ∈ Cs then we can decide to apply
the rule using l2, getting the CSS 〈F ∪{Tφ : (c1, l2)},Cr,Cs〉. Let us observe that 〈F∗〉
rule needs to choose two labels y and z such that yz ≤ x ∈ Cr.

Definition 14 (Closure condition). A CSS 〈F ,Cr,Cs〉 is closed if one of the following
conditions holds:

1. Tφ : (x,u) ∈ F , Fφ : (y,u) ∈ F and x ≤ y ∈ Cr

2. FI : (x,u) ∈ F and 1 ≤ x ∈ Cr

3. F� : (x,u) ∈ F
4. Fφ : (x,u) ∈ F and x is inconsistent

A CSS is open if it is not closed. A DBI-tableau is closed if all its branches are closed.

Definition 15 (DBI-proof). A DBI-proof for a formula φ is a DBI-tableau for φ which
is closed.

Let us recall that we deal with labelled formulae with two kinds of labels: resource
labels and state labels. Each CSS (branch) contains two sets of constraints, one for
resources and another for states. Moreover the closure of such constraints can be repre-
sented by graphs. There are rules which modify constraint sets (graphs) and introduce
new labels. Other rules have a set of conditions that must be satisfied, by finding labels
satisfying it and then to solve constraints on the constraint graphs.

Let us now consider the formula φ≡ (�(P→♦Q)∧♦P)−∗♦Q and give a DBI-proof
for it. By Definition 13, the following DBI-tableau [〈{Fφ : (1, l1)} ,{1 ≤ 1} ,{l1 � l1}〉]
is a DBI-tableau for φ. We introduce a new representation for a DBI-tableau, which is

[F]

F(�(P → ♦Q)∧♦P)−∗♦Q : (1, l1)

[Cr]

1 ≤ 1

[Cs]

l1 � l1

We can observe that there are three columns, one for the labelled formula sets of the
CSS of the DBI-tableau ([F]), one for the resource constraint sets of the CSS of the
DBI-tableau ([Cr]) and one for the state constraint sets of the CSS of the DBI-tableau
([Cs]). By applying some rules, we obtain the following DBI-tableau:

A Modal BI Logic for Dynamic Resource Properties 143

[F]√
1 F(�(P → ♦Q)∧♦P)−∗♦Q : (1, l1)

√
2 T�(P → ♦Q)∧♦P : (c1, l1)√

7 F♦Q : (c1, l1)

√
4 T�(P → ♦Q) : (c1, l1)√

3 T♦P : (c1, l1)

TP : (c1, l2)

√
5 TP → ♦Q : (c1, l2)

FP : (c1, l2)
√

6 T♦Q : (c1, l2)

× TQ : (c1, l3)

FQ : (c1, l3)

×

[Cr]

1 ≤ 1

c1 ≤ c1

[Cs]

l1 � l1

l1 � l2

l2 � l3

We decorate a labelled formula with
√

i to show that we apply a rule on this formula at
step i. We remark that columns ([F], [Cr] and [Cs]) are trees that contain two branches.
There are two branches because there are two CSS in the DBI-tableau. The branches
on the left (resp. right) contain the elements of the first (resp. second) CSS. We also
remark that all CSS are closed (denoted ×). The CSS of the left is closed because
TP : (c1, l2) ∈ F , FP : (c1, l2) ∈ F and c1 ≤ c1 ∈ Cr. Thus, by definition, this DBI-
tableau is a DBI-proof of (�(P → ♦Q)∧♦P)−∗♦Q.

5 Soundness and Completeness Results

The soundness proof uses similar techniques than the ones used in BI for a labelled
tableaux method [4]. The key point is the notion of realizability of a CSS 〈F ,Cr,Cs〉,
that means there exists a dynamic model K and embeddings from resource labels to the
resource set (�·�) and state labels to the state set (�·�) of K such that if Tφ : (x,u) ∈ F
then �x�,�u� �K φ and if Fφ : (x,u) ∈ F then �x�,�u� ��K φ.

Definition 16 (Realization). Let 〈F ,Cr,Cs〉 be a CSS. A realization of it is a triple
(K ,�.�,�.�) such that K =(M ,�·�,�K) is a dynamic resource model, M =(R,•,e,π,�
,S,), �.� : Dr(Cr)→ R and �.� : As(Cs)→ S, such that:

– �1�= e
– �x◦ y�= �x� • �y�
– If Tφ : (x,u) ∈ F then �x�,�u� �K φ
– If Fφ : (x,u) ∈ F then �x�,�u� ��K φ

144 J.R. Courtault and D. Galmiche

– If x ≤ y ∈ Cr then �x� � �y�
– If u � v ∈ Cs then �u� �v�

We say that a CSS/branch is realizable if there exists a realization of it. We say that a
tableau is realizable if it contains a realizable CSS/branch.

Lemma 4. Let 〈F ,Cr,Cs〉 be a CSS and (K ,�.�,�.�) a realization of it. For all x ≤ y ∈
Cr, �x� � �y� and for all u � v ∈ Cs, �u� �v�.

Lemma 5. The closed DBI-tableaux are not realizable.

Lemma 6. The expansion rules preserve realizability, i.e., if a rule of the DBI-tableau
method is applied on a labelled formula of a realizable CSS then one of the obtained
CSS is realizable.

Theorem 1 (Soundness). Let φ be a formula, if there exists a DBI-proof of φ then φ is
valid.

Proof. Let T be a DBI-proof of φ. Let us assume that φ is not valid. Then there exits a
dynamic resource model K such that e,s ��K φ. If we consider �1�= e and �l1�= s we
obtain a realisation (K ,�.�,�.�) of the initial CSS 〈{Fφ : (1, l1)},{1 ≤ 1},{l1 � l1}〉.
Thus, by Lemma 6, one branch of T is realizable. But by Lemma 5 it is contradictory,
because as T is a DBI-proof, then T is closed. Thus φ is valid.

Before to study completeness we consider the countermodel extraction for DBI tableaux
method. The main idea consists in transforming resource and state constraints into a
dynamic resource monoid, from a branch 〈F ,Cr,Cs〉 which is not closed.

In order to obtain a countermodel, this transformation has to verify two properties:
if Tφ : (x,u) ∈ F then x,u �K φ and if Fφ : (x,u) ∈ F then x,u ��K φ. In order to satisfy
them, our method needs to saturate labelled formulae (to obtain a Hintikka CSS), that
means, for instance, if T�φ : (x,u) ∈ F then we want that x,u �K �φ, so for all state
labels v such that u � v ∈ Cs, Tφ : (x,v) ∈ F has to be verified.

Definition 17 (Hintikka CSS). A CSS 〈F ,Cr,Cs〉 is a Hintikka CSS if for any formula
φ,ψ ∈ L and any label x,y ∈ Lr and u,v ∈ Ls:

1. Tφ : (x,u) �∈ F or Fφ : (y,u) �∈ F or x ≤ y �∈ Cr

2. FI : (x,u) �∈ F or 1 ≤ x �∈ Cr

3. F� : (x,u) �∈ F
4. Fφ : (x,u) �∈ F or x is consistent
5. If TI : (x,u) ∈ F then 1 ≤ x ∈ Cr

6. If Tφ∧ψ : (x,u) ∈ F then Tφ : (x,u) ∈ F and Tψ : (x,u) ∈ F
7. If Fφ∧ψ : (x,u) ∈ F then Fφ : (x,u) ∈ F or Fψ : (x,u) ∈ F
8. If Tφ∨ψ : (x,u) ∈ F then Tφ : (x,u) ∈ F or Tψ : (x,u) ∈ F
9. If Fφ∨ψ : (x,u) ∈ F then Fφ : (x,u) ∈ F and Fψ : (x,u) ∈ F

10. If Tφ → ψ : (x,u)∈ F then ∀y∈ Lr, x ≤ y ∈ Cr ⇒ Fφ : (y,u)∈ F or Tψ : (y,u) ∈ F

A Modal BI Logic for Dynamic Resource Properties 145

11. If Fφ → ψ : (x,u)∈ F then ∃y ∈ Lr, x ≤ y ∈ Cr and Tφ : (y,u) ∈ F and Fψ : (y,u)∈
F

12. If Tφ ∗ψ : (x,u) ∈ F then ∃y,z ∈ Lr, yz ≤ x ∈ Cr and Tφ : (y,u) ∈ F and Tψ :
(z,u) ∈ F

13. If Fφ∗ψ : (x,u)∈ F then ∀y,z ∈ Lr, yz ≤ x∈ Cr ⇒ Fφ : (y,u)∈F or Fψ : (z,u)∈ F
14. If Tφ−∗ψ : (x,u) ∈ F then ∀y ∈ Lr, xy ∈ Dr(Cr)⇒ Fφ : (y,u) ∈ F or Tψ : (xy,u)∈

F
15. If Fφ−∗ψ : (x,u) ∈ F then ∃y ∈ Lr, xy ∈ Dr(Cr) and Tφ : (y,u) ∈ F and Fψ :

(xy,u) ∈ F
16. If T♦φ : (x,u) ∈ F then ∃v ∈ Ls, u � v ∈ Cs and Tφ : (x,v) ∈ F
17. If F♦φ : (x,u) ∈ F then ∀v ∈ Ls, u � v ∈ Cs ⇒ Fφ : (x,v) ∈ F
18. If T�φ : (x,u) ∈ F then ∀v ∈ Ls, u � v ∈ Cs ⇒ Tφ : (x,v) ∈ F
19. If F�φ : (x,u) ∈ F then ∃v ∈ Ls, u � v ∈ Cs and Fφ : (x,v) ∈ F

The conditions (1), (2), (3) and (4) of Definition 17 certify that a Hintikka CSS is
not closed. Others conditions certify that all labelled formulae of a Hintikka CSS are
saturated. Let us now define a function Ω that allows us to extract a countermodel from
a Hintikka CSS.

Definition 18 (Function Ω). Let 〈F ,Cr,Cs〉 be a Hintikka CSS and Crω be the restric-
tion of Cr to constraints including only consistent labels. The function Ω associates to
〈F ,Cr,Cs〉 a triple Ω(〈F ,Cr,Cs〉) = (M ,�·�,�K) where M = (R,•,e,π,�,S,), such
that:

– R = Dr(Crω)∪{π}, with π �∈ Dr(Cr)
– S = As(Cs)
– e = 1

– • is defined by: ∀r1,r2 ∈ R

{
r1 • r2 = r1 ◦ r2 if r1 ◦ r2 ∈ Dr(Crω)
r1 • r2 = π otherwise

– r1 � r2 iff r1 ≤ r2 ∈ Crω or r2 = π
– s1 s2 iff s1 � s2 ∈ Cs
– (r,s) ∈ �P� iff (r = π) or (∃r′ ∈ R,r′ � r and TP : (r′,s) ∈ F)

Let 〈F ,Cr,Cs〉 be a CSS and x ∈ Dr(Cr). We remark that x is a consistent label resource
if and only if x ∈ Dr(Crω). Indeed, if x ∈ Dr(Cr) then by Corollary 1, x ≤ x ∈ Cr. Thus,
as x is consistent, all resource labels and sub-labels of x are consistent by Proposition 2.
Thus x ≤ x ∈ Crω and x ∈ Dr(Crω). Now, if x ∈ Dr(Crω) then there exist xy ≤ z ∈ Crω
or z ≤ xy ∈ Crω. Therefore x is consistent otherwise xy ≤ z �∈ Crω or z ≤ xy �∈ Crω.

Lemma 7. Let 〈F ,Cr,Cs〉 be a Hintikka CSS and Ω(〈F ,Cr,Cs〉) = (M ,�·�,�K) where
M = (R,•,e,π,�,S,). (M ,�·�,�K) is a dynamic resource model.

Lemma 8. Let 〈F ,Cr,Cs〉 be a Hintikka CSS. Let Ω(〈F ,Cr,Cs〉) = (M ,�·�,�K) where
M = (R,•,e,π,�,S,). For any formula φ the following properties hold:

1. π,s �K φ
2. If Fφ : (r,s) ∈ F and r consistent then r,s ��K φ
3. If Tφ : (r,s) ∈ F and r consistent then r,s �K φ

146 J.R. Courtault and D. Galmiche

Lemma 9. Let 〈F ,Cr,Cs〉 be a Hintikka CSS such that Fφ : (1,s) ∈ F . φ is not valid.

Proof. If the resource label 1 is inconsistent, then it is contradictory because Fφ :
(1,s) ∈ F and by condition (4) of Definition 17. Thus 1 is consistent. By Lemma 7,
Ω(〈F ,Cr,Cs〉) is a dynamic resource model. By Lemma 8, e,s ��K φ in this model.
Thus Ω(〈F ,Cr,Cs〉) is a countermodel of φ and then φ is not valid.

The proof of completeness consists in building a Hintikka CSS from a CSS which
cannot be closed, in the spirit of the proof developed for BBI [8]. Then we need a fair
strategy and a oracle which contains all finite consistent (not closed but saturated) CSS.

Definition 19 (Fair strategy). A fair strategy is a labelled formulae sequence (SiFi :
(xi,ui))i∈N in {T,F}× L × Lr × Ls such that any labelled formula occurs infinitely
many times in this sequence, that is {i ∈ N | SiFi : (xi,ui) ≡ SF : (x,u)} is infinite for
any SF : (x,u) ∈ {T,F}×L ×Lr ×Ls.

Proposition 3. There exists a fair strategy.

The main argument is that the set of labelled formulae is countable.

Definition 20. Let P be a set of CSS.

1. P is �-closed if 〈F ,Cr,Cs〉 ∈ P holds whenever 〈F ,Cr,Cs〉 � 〈F ′,C ′
r ,C ′

s〉 and
〈F ′,C ′

r ,C ′
s〉 ∈ P hold.

2. P is of finite character if 〈F ,Cr,Cs〉 ∈ P holds whenever 〈F f ,Cr f ,Cs f 〉 ∈ P holds
for every 〈F f ,Cr f ,Cs f 〉� f 〈F ,Cr,Cs〉.

3. P is saturated if for any 〈F ,Cr,Cs〉 ∈ P and any instance

cond(F ,Cr,Cs)

〈F1,Cr1,Cs1〉 | ... | 〈Fk,Crk,Csk〉
of a rule of Figure 1, if cond(F ,Cr,Cs) is fulfilled then 〈F ∪Fi,Cr ∪Cri,Cs∪Csi〉 ∈
P for at least one i ∈ {1, ...,k}.

Definition 21 (Oracle). An oracle is a set of non closed CSS which is �-closed, of finite
character and saturated.

Lemma 10. There exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau.

This oracle is the set of all CSS such that there exists no closed DBI-tableau for their
finite sub-CSS (�). Let us assume that there exists no DBI-proof of formula ϕ and
show that ϕ is not valid by constructing a Hintikka CSS. Let us note that ϕ denotes the
formula for which we are constructing a Hintikka CSS and φ denotes any formula. Let
T0 a initial DBI-tableau for ϕ, we have

1. T0 = [〈{Fϕ : (1, l1)},{1 ≤ 1},{l1 � l1}〉]
2. T0 cannot be closed

A Modal BI Logic for Dynamic Resource Properties 147

By Lemma 10, there exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau. Let P be such an oracle. By hypothesis we have 〈{Fϕ :
(1, l1)},{1 ≤ 1},{l1 � l1}〉 ∈ P . By Proposition 3, there exists a fair strategy. Let S
be such a strategy. We denoted SiFi : (xi,ui) the ith formula of S . We built a sequence
〈Fi,Cri,Csi〉0�i as follows:

– 〈F0,Cr0,Cs0〉= 〈{Fϕ : (1, l1)},{1 ≤ 1},{l1 � l1}〉
– If 〈Fi ∪{SiFi : (xi,ui)},Cri,Csi〉 �∈ P then 〈Fi+1,Cri+1,Csi+1〉= 〈Fi,Cri,Csi〉
– If 〈Fi∪{SiFi : (xi,ui)},Cri,Csi〉 ∈P then 〈Fi+1,Cri+1,Csi+1〉= 〈Fi∪{SiFi : (xi,ui)}∪

Fe,Cri ∪Cre,Csi ∪Cse〉 such that Fe, Cre and Cse are determined by:

Si Fi Fe Cre Cse

F φ → ψ {Tφ : (a,ui),Fψ : (a,ui)} {xi ≤ a} /0
T φ∗ψ {Tφ : (a,ui),Tψ : (b,ui)} {ab ≤ xi} /0
F φ−∗ψ {Tφ : (a,ui),Fψ : (xia,ui)} {xia ≤ xia} /0
T I /0 {1 ≤ xi} /0
T ♦φ {Tφ : (xi,c)} /0 {ui � c}
F �φ {Fφ : (xi,c)} /0 {ui � c}
Otherwise /0 /0 /0

with a = c2i+1, b = c2i+2 and c = li+2.

Proposition 4. For any i ∈ N, the following properties hold:

1. Fϕ : (1, l1) ∈ Fi, 1 ≤ 1 ∈ Cri and l1 � l1 ∈ Csi

2. Fi ⊆ Fi+1, Cri ⊆ Cri+1 and Csi ⊆ Csi+1

3. 〈Fi,Cri,Csi〉0�i ∈ P
4. Ar(Cri)⊆ {1,c1,c2, ...,c2i}
5. As(Csi)⊆ {l1, l2, ..., li+1}

We now consider the limit CSS 〈F∞,Cr∞,Cs∞〉 of the sequence 〈Fi,Cri,Csi〉0�i defined
by:

F∞ =
⋃

i

Fi and Cr∞ =
⋃

i

Cri and Cs∞ =
⋃

i

Csi

Proposition 5. We have 〈F∞,Cr∞,Cs∞〉 ∈ P and for all labelled formulae Sφ : (x,u), if
〈F∞ ∪{Sφ : (x,u)},Cr∞,Cs∞〉 ∈ P then Sφ : (x,u) ∈ F∞

Lemma 11. The limit CSS is a Hintikka CSS.

Theorem 2 (Completeness). Let ϕ be a formula, if ϕ is valid then there exists a DBI-
proof for ϕ.

Proof. We suppose that there is no DBI-proof of ϕ and show that ϕ is not valid. Our
method allows us to build a limit CSS that is a Hintikka CSS, by Lemma 11. By property
1 of Proposition 4, Fϕ : (1, l1) ∈ Fi. By Lemma 9, ϕ is not valid.

148 J.R. Courtault and D. Galmiche

6 Conclusion

We have defined and studied a modal extension of BI, called DBI, that allows us to
express dynamic properties about resources. We propose a Kripke semantics for DBI
and a labelled tableaux method that is proved sound and complete w.r.t. this semantics.
Compared to previous works on proof-theory in BI, the labelled tableaux method for
DBI deals not only with a so-called resource graph but also with a state graph. Moreover
we show how we can generate countermodels in case of non-validity.

Future works will be devoted to the study of other extensions of BI with other modal-
ities such that fragments of SCRP/MBI [12], in order to mix dynamic resources and
processes, and also of the semantics based on Petri nets for such extensions.

References

1. Biri, N., Galmiche, D.: A Separation Logic for Resource Distribution. In: Pandya, P.K.,
Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 23–37. Springer, Heidelberg
(2003)

2. Engberg, U., Winskel, G.: Completeness results for Linear Logic on Petri nets. Annals of
Pure and Applied Logic 86, 101–135 (1997)

3. Galmiche, D., Méry, D.: Tableaux and Resource Graphs for Separation Logic. Journal of
Logic and Computation 20(1), 189–231 (2010)

4. Galmiche, D., Méry, D., Pym, D.: The semantics of BI and Resource Tableaux. Math. Struct.
in Comp. Science 15(6), 1033–1088 (2005)

5. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
6. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),

576–580 (1969)
7. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: 28th

ACM Symposium on Principles of Programming Languages, POPL 2001, London, UK,
pp. 14–26 (2001)

8. Larchey-Wendling, D.: The Formal Proof of the Strong Completeness of Boolean BI (2012),
http://www.loria.fr/˜larchey/BBI

9. Larchey-Wendling, D., Galmiche, D.: The Undecidability of Boolean BI through Phase Se-
mantics. In: 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010,
Edinburgh, UK, pp. 147–156 (July 2010)

10. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)
11. O’Hearn, P.W., Pym, D.J.: The Logic of Bunched Implications. Bulletin of Symbolic

Logic 5(2), 215–244 (1999)
12. Pym, D.J., Tofts, C.: Systems modelling via resources and processes: Philosophy, calculus,

semantics, and logic. Electronic Notes in Theoretical Computer Science 172, 545–587 (2007)
13. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications. Applied

Logic Series, vol. 26. Kluwer Academic Publishers (2002)
14. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: IEEE Sympo-

sium on Logic in Computer Science, Copenhagen, Danemark, pp. 55–74 (July 2002)

http://www.loria.fr/~larchey/BBI

	A Modal BI Logic for Dynamic Resource Properties
	Introduction
	The DBI logic
	Expressiveness of DBI
	A proof System for DBI
	Labels for Resources and States
	A Labelled Tableaux Method for DBI

	Soundness and Completeness Results
	Conclusion

