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Public announcements, public assignments and the complexity of
their logic

Hans van Ditmarscha*, Andreas Herzigb and Tiago de Limac, d

aDepartment of Logic, University of Seville, Spain; bUniversity of Toulouse, IRIT-CNRS, France;
cUniversity of Lille Nord de France, France; dCRIL, University of Artois and CNRS, France

We study the extension of public announcement logic PAL by public assignments, which
we call PALA. Just as in the case of PAL, the standard procedure for deciding PALA valid-
ity, i.e. the use of so-called reduction axioms to translate PALA formulae into formulae in
epistemic logic EL, may lead to exponential growth. In this paper, we show that such a
price is not mandatory, for we provide a polynomial translation of PALA into EL. This is
based on abbreviations of subformulae by new propositional letters. Such optimal transla-
tion also enables us to show the computational complexity of the problem of deciding
PALA validity, which turns out to be coNP-complete in the single-agent case and
PSPACE-complete in the multiagent case.

Keywords: knowledge representation and reasoning; dynamic epistemic logic; public
announcements; public assignments; automated theorem proving; reduction axioms;
complexity

1. Introduction

Dynamic Epistemic Logics (DELs) are extensions of epistemic logic (EL). They provide a
logical modelling of actions and events in terms of their effects on the world and on the
agents’ knowledge. Up to now, research on DELs mainly concentrated on epistemic actions
where agents learn that some proposition is true. The archetype of all DELs is Plaza’s (1989)
public announcement logic (PAL), which has formulae of the form ½!w�u, reading ‘u holds
after the public announcement of w’. However, logics have been proposed where assignments
of atomic propositions are added to DELs. They have formulae of the form ½p:¼w�u, reading
‘u holds after p is assigned the truth value of w’ (van Ditmarsch, van der Hoek, & Kooi,
2005; van Benthem, van Eijck, & Kooi, 2006; Kooi, 2007). The semantics of both announce-
ments and assignments is in terms of functions updating Kripke models. We baptise PALA,
the extension of PAL with public assignments. PALA was applied in van Ditmarsch, Herzig,
and de Lima (2007, 2011) to reasoning about actions in Artificial Intelligence.

PALA can be axiomatised by means of so-called reduction axioms. These axioms are
equivalences whose iterated application allows the elimination of the dynamic operators from
formulae. Such rewrite rules allow therefore the reduction of the problem of deciding PALA
validity to that of the underlying epistemic logic. Thus, one obtains decision procedures for
PALA by reduction to EL and decision procedures for EL.
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Clearly, reduction may be suboptimal: basically, as the right hand side of the equivalences
may be twice as long as the left hand side, exponential growth of the reduced formula cannot
be avoided. Lutz (2006) proposed a polynomial reduction from to PAL to EL. That transfor-
mation makes use of a technique which comes from automated theorem proving: in order to
avoid exponential growth when putting formulae into conjunctive or disjunctive normal form,
subformulae v of a given formula u are abbreviated by a new propositional letter nv. This is
done systematically for every subformula of u. In the case of modal logics one has to prefix
the abbreviation by what is sometimes called a master modality in order to guarantee that the
equivalence holds not only in the actual world, but throughout the model (which can be
thought of as being point-generated). The transformation preserves validity, and the length of
the resulting formula is polynomial in the length of the original formula u.

In this paper we pursue the quest of polynomial reduction procedures. We show that
Lutz’s abbreviation technique can be adapted to PALA. This leads us to an optimal method
for deciding PALA validity. It follows that the problem of deciding validity is coNP-complete
for single-agent PALA, and PSPACE-complete for multiagent PALA.

The remainder of this paper is organised as follows: Section 2 introduces public
announcement logic with assignment PALA. Section 3 contains the standard reduction from
PALA to PAL, which is non-optimal. Section 4 recalls Lutz’s optimal reduction from PAL
to EL, and Section 5 provides an optimal reduction from PALA to EL. Section 6 addresses
multiagent PALA. Section 7 concludes.1

2. Public announcement logic with assignment

In this section we recall public announcement logic with assignment (PALA). We only
present the single-agent case, of which the multiagent case is a straightforward extension.

2.1. Syntax

The language of public announcement logic with assignment PALA is the set of formulae u
and assignments r that is defined by the following Backus-Naur Form (BNF):

u ::¼ p j :ujðu ^ uÞ j Ku j ½!u�u j ½r�u

r ::¼ � j p:¼u; r

where p ranges over the countable set of propositional letters P and � is the empty assign-
ment. We write ½p1:¼w1; � � � ; pk:¼wk�u instead of ½p1:¼w1; � � � ; pk:¼wk; ��u.

Let a be one of !u or r; the formula ½a�u reads ‘u holds after all possible executions of
a’. The event !u is the public announcement of u; and the event p:¼u is the public assign-
ment of u to the atom p. For example, p:¼ðq ^ :qÞ is an assignment making p false, and
K ½p:¼ðq ^ :qÞ�:p is a formula expressing that the agent knows this.

Every ½r� is an assignment operator, and every ½!w� is an announcement operator. A
dynamic operator is either an assignment operator or an announcement operator. The lan-
guage of public announcement logic (PAL) is the subset of the language of PALA where no
assignment operators occur, the language of epistemic logic with assignment (ELA) is the
subset of the language of PALA where no announcement operators occur, and the language
of epistemic logic EL is the subset of the language of ELA where no dynamic operators
occur.

2 H. van Ditmarsch et al.
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We use the standard abbreviations for ?;>;_;!, and $: ? is p ^ :p (for some proposi-
tional letter p), > is :?, u _ w is :ð:u ^ :wÞ;u ! w is :ðu ^ :wÞ, and u $ w is
ðu ! wÞ ^ ðw ! uÞ.

The language just defined allows for complex assignments where a propositional letter
appears more than once on the left hand side of the operator ‘:=’. Our semantics will make
that in such cases only the leftmost occurrence of this propositional letter matters.

Every assignment r may be considered as a mapping from P to formulae of the language
of PALA. This is recursively defined as follows:

ðqÞ� ¼ q

ðqÞðp:¼ u; rÞ ¼ u if q ¼ p
ðqÞr otherwise

�

For example, ðpÞ� ¼ p, ðpÞðp:¼:pÞ ¼ :p, and ðpÞðp:¼q; q:¼p; p:¼rÞ ¼ q.
Then, without loss of generality, an assignment r can be seen as a finite, and hence

partial, function from propositional letters to formulae. The domain of r can be defined
recursively as follows:

domð�Þ ¼ ;

domðp:¼u; rÞ ¼ fpg [ domðrÞ

It will sometimes be convenient to use finite sets fp1:¼u1; . . . ; pn:¼ung to denote
assignments; the empty assignment � is then identified with ;.

The function len returns the length of a given expression, where an expression is a for-
mula or an assignment. It basically counts the number of symbols to write down the given
expression (without parentheses).2 In other words:

lenðpÞ ¼ 1

lenð:uÞ ¼ 1þ lenðuÞ

lenðu ^ wÞ ¼ 1þ lenðuÞ þ lenðwÞ

lenðKuÞ ¼ 1þ lenðuÞ

lenð½!w�uÞ ¼ 1þ lenðwÞ þ lenðuÞ

lenð½r�uÞ ¼ 1þ lenðrÞ þ lenðuÞ

lenðrÞ ¼
X

p2domðrÞ
lenððpÞrÞ

Journal of Applied Non-Classical Logics 3
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For example, lenð?Þ ¼ lenðp ^ :pÞ ¼ 4, lenð>Þ ¼ lenð:?Þ ¼ 5, and

lenðu $ wÞ ¼ lenð:ðu ^ :wÞ ^ :ðw ^ :uÞÞ

¼ 1þ lenð:ðu ^ :wÞÞ þ lenð:ðw ^ :uÞÞ

¼ 1þ ðlenðuÞ þ lenðwÞ þ 3Þ þ ðlenðuÞ þ lenðwÞ þ 3Þ

¼ 7þ ð2� lenðuÞÞ þ ð2� lenðwÞÞ

and the length of ½p:¼q; q:¼p ^ q; ��Kp is 1þ lenðp:¼q; q:¼p ^ q; �Þ þ lenðKpÞ ¼ 1þ
ð1þ 3þ 0Þ þ 2 ¼ 7.

2.2. Semantics

Formulae of the language of PALA are interpreted in pointed models of epistemic logic.
First, a model of epistemic logic (EL model) is a tuple M ¼ hW ;R;V i such that:

• W is a non-empty set of possible worlds,
• R#W �W is an equivalence relation, and
• V : P ! }ðW Þ associates an interpretation V ðpÞ#W to each p 2 P.

For every w 2 W, the pair ðM ;wÞ is a pointed EL model.
For convenience, we define RðwÞ ¼ fujðw; uÞ 2 Rg. The elements of RðwÞ are the worlds

the agent considers possible at w.
The satisfaction relation � between pointed EL models ðM ;wÞ ¼ ðhW ;R;V i;wÞ and

PALA formulae is inductively defined as follows:

where sutM ¼ fwjM ;w � ug is the extension of u in M , and where the models M !u and
Mr are updates of the epistemic model M , that are respectively defined as:

M !u ¼ hW !u;R!u;V !ui Mr ¼ hW r;Rr;V ri

W !u ¼ W W r ¼ W

4 H. van Ditmarsch et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r]

 a
t 0

1:
12

 1
2 

N
ov

em
be

r 
20

12
 



R!u ¼ R \ ðsutM � sutM Þ Rr ¼ R

V !u ¼ V V rðpÞ ¼ sðpÞrtM

To illustrate the semantics of PALA, let ðM ;wÞ be any pointed EL model. We have
M ;w � ½p:¼?�:p because Vp:¼?ðpÞ ¼ sðpÞðp:¼?ÞtM ¼ s?tM ¼ ;; and we have
M ;w � ½!p�Kp because R!pðwÞ# sptM .

Note that if ðM ;wÞ is a pointed EL model then Mp:¼u is an EL model; and if M ;w � u
(which is the relevant case in the truth condition) then M !u is an EL model.

Remark. Our definition of updates by announcements is a well-known variation of the stan-
dard definition where W !u ¼ sutM and V !uðpÞ ¼ V ðpÞ \ suMt; see for example Kooi (2007).

A PALA formula u is valid in a model M ¼ hW ;R;V i, noted M � u, if and only if
sutM ¼ W ; a formula u is PALA valid, noted �PALA u, if and only if for all pointed EL
models ðM ;wÞ, ðM ;wÞ � u; and u is PALA satisfiable if and only if PALA:u.

For example, ½p:¼?�:p and ½!p�Kp are PALA valid, for atomic p. Another example is
�PALA ½p:¼ q; q:¼ p ^ r�ðp ^ :q ^ sÞ $ ðq ^ :ðp ^ rÞ ^ sÞ.

This by the way also illustrates that the elements of a complex assignment can be thought
of as being executed in parallel. Just as in PAL, ½!u�u is not always PALA valid, nor is the
stronger ½!u�Ku.

The corresponding semantic notions of validity and satisfiability are defined likewise for
PAL, ELA and EL.

Proposition 1. Both PALA and ELA are conservative extensions of EL: if u is an EL
formula then both �PALA u iff �EL u, and �ELA u iff �EL u.

3. Suboptimal reduction

In this section we present the method that is common in dynamic epistemic logics to prove
decidability, viz. by means of reduction axioms.

3.1. Reduction axioms

Logic EL is the well-known logic S5, whose axiomatisation consists of CPL (the tautologies
of propositional classical logic), rules RM (Modus Ponens) and RN (Necessitation), and
axiom schemes K, T and 5.

from u and u ! w infer w RM
from u infer Ku RN
Kðu ! wÞ ! ðKu ! K wÞ K
Ku ! u T
:Ku ! K:u 5

The axiomatisation of PALA extends that of EL by so-called reduction axioms: equivalences
for all possible combinations of assignments with the logical connectives.

Journal of Applied Non-Classical Logics 5
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Proposition 2. (van Ditmarsch et al., 2005; van Benthem et al., 2006; van Ditmarsch,
van der Hoek, & Kooi, 2007)

The following formula schemes are PALA valid.

½r�p $ ðpÞr; for p 2 P Red:¼;P

½!w�p $ ðw ! pÞ; for p 2 P Red!;P
½r�:u $ :½r�u Red:¼;:
½!w�:u $ ðw ! :½!w�uÞ Red!;:

½r�ðu1 ^ u2Þ $ ð½r�u1 ^ ½r�u2Þ Red:¼;^
½!w�ðu1 ^ u2Þ $ ð½!w�u1 ^ ½!w�u2Þ Red!;^

½r�Ku $ K½r�u Red:¼;K

½!w�Ku $ ðw ! K½!w�uÞ Red!;K

The right hand side of the above equivalences is simpler than their left hand side, in the
sense that the dynamic operator is either eliminated (in the case of the first two equivalences)
or ‘pushed inward’ (in the case of the other equivalences); see for example Kooi (2007) for a
precise definition of what it means to be ‘simpler’. Such equivalences are called reduction
axioms. To apply them means to replace subformulae of a given formula that match the left
hand side of some reduction axiom, with its right hand side. When we do this we apply the
rule of replacement of equivalents RRE. The latter preserves validity because the below infer-
ence rules do so.

Proposition 3. The following inference rules preserve PALA validity.

from u $ u0 infer ½!w�u $ ½!w�u0 REr
!

from w $ w0 infer ½!w�u $ ½!w0�u REl
!

from u $ u0 infer ½r�u $ ½r�u0 REr
:¼

from w $ w0infer ½p: ¼ w; r�u $ ½p: ¼ w0; r�u REl
:¼

Proof. REr
! and REl

! follow from the proof in van Ditmarsch, van der Hoek, and Kooi (2007)
that the rule of replacement of equivalents preserves PAL validity.

For REr
:¼, suppose sutM ¼ su0tM for every model M , and let M be some model. Then

s½r�utM ¼ sutMr . By hypothesis the latter equals su0tMr , which in turn is equal to s½r�u0tM .
For REl

:¼, suppose swtM ¼ sw0tM for every model M , and let M be some model. Then

Mp:¼w;r ¼ Mp:¼w0;r. �

Proposition 2 provides reduction axioms for all combinations of dynamic operators with
EL connectives. Under the condition that we start with some dynamic operator ½!w� that is
innermost (in the sense that it has no other dynamic operator in its scope) we have reduction
axioms for all cases, allowing the elimination of ½!w�: the resulting formula has one dynamic
operator less than the original formula.

Remark. We did not state reduction axioms for combinations of dynamic operators with
dynamic operators. Such axioms exist for PAL and ELA, viz. ½!w�½!v�u $ ½!ðw ^ ½!w�vÞ�u
and ½r1�½r2�u $ ½r1 � r2�u, where r1 � r2 is the composition of r1 and r2 that is defined

6 H. van Ditmarsch et al.
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as a function composition. However, there can be no reduction axiom for ½r�½!w�u. In particu-
lar the schema ½r�½!w�u $ ½!ð½r�wÞ�½r�u is PALA invalid. To see this replace r with
p:¼p ^ :Kp and replace both w and u with p. Then

½p:¼p ^ :Kp�½!p�p $ ½p:¼p ^ :Kp�>
$ >

½!ð½p:¼p ^ :Kp�pÞ�½p:¼p ^ :Kp�p $ ½!ð½p:¼p ^ :Kp�pÞ�ðp ^ :KpÞ
$ ½!ðp ^ :KpÞ�ðp ^ :KpÞ
$ :ðp ^ :KpÞ

So the former formula is PALA valid because it reduces to >, while the latter is not because
the last line is not valid in S5.

The absence of such reduction principles does not hurt. For our purposes we do not need
reduction axioms for sequences of dynamic (announcement or assignment) operators, because
by iterating the elimination of an innermost dynamic operator we end up with a formula
having no dynamic operator at all; in other words, an EL formula. Call redðuÞ the result of
rewriting u by the above reduction axioms until all dynamic operators are eliminated.

Theorem 4. Let u be a PALA formula. Then:

(1) redðuÞ is an EL formula
(2) �PALA u $ redðuÞ
(3) �PALA u if and only if �EL redðu)

Proof. This is proved just as for the other dynamic epistemic logics having reduction axioms
for all logical operators of EL; see for example van Ditmarsch, van der Hoek, and Kooi
(2007), and Kooi (2007).

For the first item, we use that the right hand sides of the reduction axioms are simpler
than their left hand sides in the sense that the dynamic operator is either eliminated or pushed
inwards: as the function red is applied until there is no longer a dynamic operator, the result
no longer has a dynamic operator.

The proof of the second item uses that red applies valid equivalences (Proposition 2) and
that the inference rule RRE preserves PALA validity (due to Proposition 3).

The third item follows from the first two and Proposition 1. �

The last item of Theorem 4 tells us that PALA validity of u can be checked by applying
some EL decision procedure to redðuÞ. While the problem of deciding EL validity is in coNP,
this does not entitle us to claim the same for the problem of deciding validity in PALA, as
we are going to see now.

3.2. Reduction may lead to exponential growth

We have just seen that red provides a decision procedure for PALA validity. However,
redðuÞ may be exponentially longer than u.

Example 5. Consider the family of formulae wn that is inductively defined by:

w0 ¼ p0
wnþ1 ¼ ½pn:¼pnþ1 ^ pnþ1�wn

Journal of Applied Non-Classical Logics 7
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Successively applying the reduction axioms to the innermost assignment we get:

½pn�1:¼pn ^ pn� . . . ½p1:¼p2 ^ p2�½p0:¼p1 ^ p1�p0 $ ½pn�1:¼pn ^ pn� . . . ½p1:¼p2 ^ p2�ðp1 ^ p1Þ

$ ½pn�1: ¼ pn ^ pn� . . . ððp2 ^ p2Þ ^ ðp2 ^ p2ÞÞ
..
.

$ ð. . . ðpn ^ pnÞ ^ . . .Þ . . .Þ

The last formula cannot be reduced any more, and it contains 2n occurrences of the proposi-
tional letter pn.

One may hope to find a polynomial reduction which, given a PALA formula u, produces
an EL formula u0 such that u $ u0 is PALA valid. However, this cannot be the case. Lutz
(2006, Theorem 2) showed that if the underlying epistemic logic is K, then there is a family
of PAL formulae un such that for every un, any equivalent EL formula is exponentially
longer than un. While he only conjectured that his result transfers to S5, French, van der
Hoek, Iliev, and Kooi (2011) recently provided a proof.

Notwithstanding, there may still be a polynomial transformation preserving satisfiability
equivalence (which is a weaker requirement than logical equivalence). The aim of the rest of
the paper is to provide such a transformation.

4. Optimal reduction for PAL

For PAL, Lutz (2006) proposed a polynomial reduction to EL preserving satisfiability. His
transformation adapts a technique originating from automated theorem proving. We present
this transformation now.

4.1. The abbreviation technique for propositional logic

When putting formulae of classical propositional logic into conjunctive or disjunctive normal
form, one faces the problem of exponential growth. For example, the straightforward applica-
tion of the law of distributivity to ðu ^ wÞ _ v leads to ðu _ vÞ ^ ðw _ vÞ: the subformula v
occurs twice in the resulting formula, and iterations of the distribution may produce formulae
that are exponentially longer than the original formula.

In automated theorem proving, a standard technique for obtaining polynomial normal
forms is to replace complex subformulae v of a given formula u with a new propositional
letter nv and conjoin the resulting formula and the equivalence nv $ v; see for example
Nonnengart and Weidenbach (2001). For example, the complex subformula v in ðu ^ wÞ _ v
is replaced with a new atomic formula nv, resulting in ðu ^ wÞ _ nv, to which the law of
distributivity can be applied without leading to exponential growth. This transformation
preserves satisfiability, in the sense that ðu ^ wÞ _ v is satisfiability equivalent to
ððu ^ wÞ _ nvÞ ^ ðnv $ vÞ.

The abbreviation nv $ v must also be put in normal form, hence subformulae have to
be abbreviated systematically. This is done by associating to u the following set of bi-impli-
cations (where SF(u) is the set of subformulae of u):

8 H. van Ditmarsch et al.
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Bu ¼ fnp $ p j p 2 SFðuÞ \ Pg [
fn:w $ :nw j :w 2 SFðuÞg [
fnw1^w2

$ nw1
^ nw2

j w1 ^ w2 2 SFðuÞg

This transformation preserves satisfiability: the original formula u is satisfiable in classical
propositional logic if and only if nu ^ ðV BuÞ is satisfiable in classical propositional logic.
Moreover the length of the resulting formula is polynomial in the length of the original
formula u.

4.2. The abbreviation technique for epistemic logic

In the case of epistemic logic one has to take into account the modal operator of knowledge:
the definition of Bu is augmented by the set

fnKw $ Knw j Kw 2 SFðuÞg

Moreover, the abbreviations in Bu have to be prefixed by what is sometimes called a
master modality. This guarantees that the equivalences hold not only in the actual world, but
throughout the model (that is thought of as being point-generated). Then the original formula
u is EL satisfiable if and only if nu ^KðV BuÞ is EL satisfiable.

4.3. Lutz’s optimal reduction for PAL

The abbreviation method does not extend straightforwardly to PAL: To see this suppose we
again augment the definition of Bu by the set

fn½!u�w $ ½!nu�nw j ½!u�w 2 SFðuÞg

Consider the PAL unsatisfiable formula u ¼ :½!p�Kp (unsatisfiability is the case because
½!p�Kp reduces to p ! Kðp ! pÞ, which is EL valid). However, the formula

n:½!p�Kp ^Kððn:½!p�Kp $ :n½!p�KpÞ ^
ðn½!p�Kp $ ½!np�nKpÞ ^
ðnKp $ KnpÞ ^
ðnp $ pÞÞ

is PAL satisfiable in the pointed model ðhW ;R;V i;wÞ, where W ¼ fw; vg, R ¼ W �W , and
V ðpÞ ¼ V ðnpÞ ¼ V ðn:!½p�KpÞ ¼ fwg, and V ðnKpÞ ¼ ;, and V ðn½!p�KpÞ ¼ fvg. In particular note
that ðhW ;R;V i;wÞ ½!np�nKp, telling us that this naive extension does not allow the correct
abbreviation of subformulae that are in the scope of an announcement.

Lutz succeeded in finding a polynomial transformation redPAL, which maps PAL formulae
to EL formulae in a way that preserves satisfiability equivalence: for every PAL formula u,

Journal of Applied Non-Classical Logics 9
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u is PAL satisfiable iff redPALðuÞ is EL satisfiable (Lutz, 2006, Lemma 7), and the length of
the reduction lenðredPALðuÞÞ is quadratic in lenðuÞ (Lutz, 2006, Lemma 6). His trick is to
encode the modal context of a sub-formula as a superscript of the new propositional letter.
We do not give the definition of redPAL here: it is a particular case of our polynomial
transformation from PALA to EL.

5. Optimal reduction for ELA and PALA

In the rest of the paper we extend Lutz’s (2006) abbreviation technique to PALA. For the
sake of clarity, we split the exposition into two parts. In the first part, we address the frag-
ment of PALA called ELA (i.e. with assignments but without announcements), and in the
second, we address the entire logic PALA.

5.1. From ELA to EL

Call a context a list k ¼ ðk1; . . . ; kmÞ of assignments, where m � 0. The empty context is
noted (), and the concatenation of k and the assignment r is k � r ¼ ðk1; . . . ; km; rÞ. The k-th
element of k is noted kk .

The assignments governing a subformula of a given formula u make up its context in u:
for every subformula v of u, the context of v in u is the sequence of assignment operators
governing v in u.

Definition 6. Given a context k and an input formula u we recursively define the set
CSðk;uÞ of contextualised subformulae of u given k:

CSðk; pÞ ¼ fhk; pig

CSðk;:vÞ ¼ CSðk; vÞ [ fhk;:vig

CSðk; v1 ^ v2Þ ¼ CSðk; v1Þ [ CSðk; v2Þ [ fhk; v1 ^ v2ig

CSðk;KvÞ ¼ CSðk; vÞ [ fhk;Kvig

CSðk; ½r�vÞ ¼
[

p2domðrÞ
CSðk; ðpÞrÞ

 !
[ CSðk � r; vÞ [ fhk; ½r�vig

The set CSððÞ;uÞ is the set of contextualised subformulae of u.

For example, for u ¼ ½p:¼ ½q:¼ r�q�p we get:

CSððÞ;uÞ ¼ CSððÞ; ½q:¼r�qÞ [ fhðp:¼½q:¼ r�qÞ; pig [ fhðÞ; ½p:¼½q:¼r�q�pig

¼ fhðÞ; ri; hðq:¼rÞ; qi; hðÞ; ½q:¼r�qig [ fhðp:¼½q:¼r�qÞ; pi; hðÞ; ½p:¼½q:¼r�q�pig

10 H. van Ditmarsch et al.
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Let cardðSÞ be the cardinality of a set S.

Proposition 7. cardðCSðk;uÞÞ 	 lenðuÞ.

Proof. We use induction on the structure of u. In the base case u is some atomic formula
p 2 P:

cardðCSðk; pÞÞ ¼ cardðfhk; pigÞ ¼ 1 ¼ lenðpÞ

In the induction step there are four cases:

(1) u is of the form :v. We have:

cardðCSðk;:vÞÞ ¼ cardðCSðk; vÞÞ þ 1

	 lenðvÞ þ 1 ðby I:H:Þ

¼ lenð:vÞ

(2) u is of the form v1 ^ v2. This case is similar to case (1) above and is left to the
reader.

(3) u is of the form Kv. Again, this case is similar to cases (1) and (2) above and is left
to the reader.

(4) u is of the form ½r�v. We have:

cardðCSðk; ½r�vÞÞ 	 card
[

p2domðrÞ
CSðk; ðpÞrÞ

 !
þ cardðCSðk � r; vÞÞ þ cardðfhk; ½r�vigÞ

	
X

p2domðrÞ
cardðCSðk; ðpÞrÞÞ þ cardðCSðk � r; vÞÞ þ 1

	
X

p2domðrÞ
lenððpÞrÞ þ lenðvÞ þ 1 ðby I:H:Þ

	 lenðrÞ þ lenðvÞ þ 1

¼ lenð½r�vÞ

This ends the proof. �

We now define the set Bu of bi-implications associated to u:

Journal of Applied Non-Classical Logics 11
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Bu ¼ fnkp $ pjhk; pi 2 CSððÞ;uÞ and there is no kk in k s:th: p 2 domðkkÞg [

fnkp $ nðk1 ;...;kk�1Þ
ðpÞkk j hk; pi 2 CSððÞ;uÞ and kk is the right most element of k s:th: p 2 domðkkÞg [

fnk:v $ :nkv j hk;:vi 2 CSððÞ;uÞg [

fnkv1^v2 $ ðnkv1 ^ nkv2Þ j hk; v1 ^ v2i 2 CSððÞ;uÞg [

fnkKv $ Knkv j hk;Kvi 2 CSððÞ;uÞg [

fnk½r�v $ nk�rv j hk; ½r�vi 2 CSððÞ;uÞg

It is understood that the propositional letters nkv are new for u, i.e. they do not occur in u.
The next lemma will be useful in the proof of Theorem 11 (cf. Endnote 3).

Lemma 8. If CSððÞ;uÞ contains hk; vi and the bi-implication associated to nkv in Bu has a
right hand side where nlw occurs then CSððÞ;uÞ contains hl;wi.

Proof. The only non-trivial case is when v is a propositional letter p and kk is the rightmost
element of k such that p 2 domðkkÞ. In this case, we must show that hðk1; . . . ; kk�1Þ; ðpÞkki
2 CSððÞ;uÞ. First, assume that k ¼ ðk1; . . . ; kk ; . . . ; knÞ, where 0 	 k 	 n. Now, by the defi-
nition of CS, we have that if hk; pi 2 CSððÞ;uÞ then it is because p is a sub-formula of some
formula vn such that hðk1; . . . ; kn�1Þ; ½kn�vni 2 CSððÞ;uÞ. By applying this same argument
n� k times, we have that if hk; pi 2 CSððÞ;uÞ then it is because p is a sub-formula of some
formula vk such that hðk1; . . . ; kk�1Þ; ½kk �vki 2 CSððÞ;uÞ. By hypothesis, p 2 domðkkÞ. Then,
by the definition of CS, we have that the contextualised formula hðk1; . . . ; kk�1Þ; ðpÞkki
2 CSððÞ;uÞ: �

Finally, the reduction of u is:

redELAðuÞ ¼ nðÞu ^K
^

Bu

� �

Example 9. Consider the formula u ¼ ½p:¼q�½q:¼p�q. It is equivalent to q (which can be
checked by the standard reduction method) and is therefore satisfiable. The set of contextua-
lised subformulae of u is computed as follows. First,

CSððp:¼qÞ; ½q:¼p�qÞ ¼ fhðp:¼qÞ; pi; hðp:¼q; q:¼pÞ; qi; hðp:¼qÞ; ½q:¼p�qig

Second,

CSððÞ;uÞ ¼ CSððÞ; qÞ [ CSððp:¼qÞ; ½q:¼p�qÞ [ fhðÞ; ½p:¼q�½q:¼p�qig

¼ fhðÞ; qig [ fhðp:¼qÞ; pi; hðp:¼q; q:¼pÞ; qi; hðp:¼qÞ; ½q:¼p�qig
[ fhðÞ; ½p:¼q�½q: ¼ p�qig

12 H. van Ditmarsch et al.
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Now the reduction redELAðuÞ is

nðÞ½p:¼q�½q:¼p�q ^ K

�
nðÞ½p:¼q�½q:¼p�q $ nðp:¼qÞ

½q:¼p�q

�
^

�

�
nðp:¼qÞ
½q:¼p�q $ nðp:¼q;q:¼pÞ

q

�
^

�
nðp:¼q;q:¼pÞ
q $ nðp:¼qÞ

p

�
^

�
nðp:¼qÞ
p $ nðÞq

�
^

�
nðÞq $ q

� �

Just as the original formula u, the reduction of u is satisfiable.
Just as with Lutz’s (2006) reduction, the method above avoids the sub-translation of u

and does not lead to an exponential growth of the resultant formula.

Proposition 10. redELA is a polynomial transformation.

Proof. By Proposition 7, the set Bu contains at most lenðuÞ elements. The length of each
new atom nkv such that hk; vi 2 CSððÞ;uÞ is 1. The maximal length of the right part of a

bi-implication Bu is when u is a conjunction. In this case, we have:

len nkv1^v2 $
�
nkv1 ^ nkv2

��
¼ len nkv1^v2 !

�
nkv1 ^ nkv2

��
^
��

nkv1 ^ nkv2

�
! nkv1^v2

�����

¼ len

�
:
�
nkv1^v2 ^ :ðnkv1 ^ nkv2

��
^ :
��

nkv1 ^ nkv2

�
^ :nkv1^v2

��

¼ 15

This therefore bounds the length of
V
Bu: lenðuÞ times the worst case length 15 of each

element in that set, plus the conjunction symbols, i.e. 16� lenðuÞ � 1. Therefore, redELA is a
polynomial transformation from the language of ELA to that of EL; precisely, the length of

redELAðuÞ ¼ nðÞu ^KðVBuÞ is bound by 3þ ð16� lenðuÞ � 1Þ. �

Intuitively, for each pair hk; vi 2 CSððÞ;uÞ, the associated bi-implication guarantees that
the new propositional letter nkv is true in a pointed model ðM ;wÞ exactly when v is true in the

Journal of Applied Non-Classical Logics 13
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pointed model ðM k;wÞ. We then have the following result:

Theorem 11. For every ELA formula u0.

(1) redELAðu0Þ is an EL formula.
(2) u0 is ELA satisfiable if and only if redELAðu0Þ is EL satisfiable.

Proof. First, redELAðu0Þ is clearly an EL formula.

Let us prove the ‘if’ part of the second statement: suppose M ;w0 � nðÞu0
^K ðVBu0

Þ.
We show by induction on lenðkÞ þ lenðuÞ that

for every ðk; vÞ 2 CSððÞ;u0Þ and w 2 Rkðw0Þ : M ;w � nkv iff M k;w � v

where lenðkÞ and M k are recursively defined as expected as: lenððÞÞ ¼ 0, and lenðk � rÞ ¼
lenðkÞ þ lenðrÞ; and M ðÞ ¼ M and M k�r ¼ ðM kÞr. Note that since ððÞ;u0Þ 2 CSððÞ;u0Þ this
allows us to conclude that M ;w0 � u0.

The induction base is lenðkÞ þ lenðuÞ ¼ 1. Therefore, we must have k ¼ ðÞ and u ¼ p
for some propositional letter p occurring in u0. Then for every w 2 Rkðw0Þ we have

M ;w � p iff M ;w � nðÞp , because by hypothesis M ;w � Bu and nðÞp $ p 2 Bu.
For the induction step, suppose M k;w � v iff M ;w � nkv for every w in Rkðw0Þ and

hl; vi such that lenðlÞ þ lenðvÞ\ m, and let hk;ui 2 CSððÞ;u0Þ with lenðkÞ þ lenðuÞ ¼ m.
Let k be ðk1; . . . ; knÞ. We analyse the form of u.

(1) u ¼ p 2 P.
We consider two sub-cases.

• If there is no k 	 n such that p 2 domðkkÞ, then
M ;w � nkp

iff M ;w � p (because M ;w � Bu)
iff w 2 V ðpÞ
iff w 2 V kðpÞ (because there is no k s.th. p 2 domðkkÞ)
iff M k;w � p.

• If there exists k 	 n such that p 2 domðkkÞ then consider the rightmost such k, i.e.
such that p R domðklÞ for every l such that k\l 	 n, then

M ;w � nkp

iff M ;w � nðk1;...;kk�1Þ
ðpÞkk (because M ;w � Bu)

iff M ðk1;...;kk�1Þ;w � ðpÞkk (by I.H.)3

iff M ðk1;...;kk�1Þ;w � ½kk �p (by the reduction axiom)
iff M ðk1;...;kkÞ;w � p
iff M k;w � p (because p R domðklÞ, for k\l 	 n).

(2) u ¼ :w.
M ;w � nk:w
iff M ;w � :nkw (because M ;w � Bu)
iff M ;w nkw
iff M k;w w (by I.H.)

14 H. van Ditmarsch et al.
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iff M k;w � :w.
(3) u ¼ w1 ^ w2.

This is similar to case (2) above and is left to the reader.
(4) u ¼ Kw.

M ;w � nkKw
iff M ;w � Knkw (because M ;w � Bu)
iff M ; u � nkw for all u 2 RðwÞ
iff M k; u � w for all u 2 RkðwÞ (by I.H. and because Rk ¼ R)
iff M k;w � Kw.

(5) u ¼ ½r�w.
M ;w � nk½r�w
iff M ;w � nk�rw (because M ;w � Bu)
iff M k�r;w � w (by I.H.)4

iff M k;w � ½r�w.

This ends the ‘if’ part.
Finally, let us prove the ‘only if’ part: suppose M = hW, R, V i and M, w0 � u0. We

construct a new model M 0 = hW, R, V 0i, where V 0 is defined as follows: V 0ðpÞ ¼ V ðpÞ if p
occurs in u0, and V 0ðnkvÞ ¼ fwjMk;w � vg, for hk; vi 2 CSððÞ;u0Þ.

We clearly have M 0;w0 � nðÞu0
. It remains to show that:

M 0;w � v; for every v 2 Bu0
and every w 2 W

Let k be ðk1; . . . ; knÞ. We inspect the possible forms of v.

(1) v ¼ p 2 P.
We consider two sub-cases.

• If there is no k 	 n such that p 2 domðkkÞ, then

M 0;w � nkp

iff w 2 V 0ðnkpÞ
iff M k;w � p (by the definition of V 0)
iff w 2 V kðpÞ (because p R domðkkÞ for any k)
iff w 2 V ðpÞ
iff w 2 V 0ðpÞ (by the definition of V 0)
iff M 0;w � p.
Therefore, M 0;w � nkp $ p.

• If there exists k 	 n such that p 2 domðkkÞ then consider the rightmost such k, i.e.
such that p R domðklÞ for every l such that k\l 	 n, then

M 0;w � nkp

iff w 2 V 0ðnkpÞ
iff M k;w � p (by the definition of V 0)
iff w 2 V kðpÞ
iff w 2 V ðk1;���;kkÞðpÞ (because p R domðklÞ, for k\l 	 n)
iff M ðk1;���;kkÞ;w � p

Journal of Applied Non-Classical Logics 15
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iff M ðk1;���;kk�1Þ;w � ½kk �p
iff M ðk1;���;kk�1Þ;w � ðpÞkk (by the reduction axiom)
iff M 0;w � nðk1;...;kk�1Þ

ðpÞkk (by the definition of V 0).

Therefore, M 0;w � nkp $ nðk1;...;kk�1Þ
ðpÞkk .

(2) v ¼ :v1.

M 0;w � nk:v1 iff M
k;w � :v1 (by the definition of V 0)

iff M k;w v1
iff M 0;w nkv1 (again, by the definition of V 0)
iff M 0;w � :nkv1 .
Therefore, M 0;w � nk:v1 $ :nkv1 .

(3) v ¼ v1 ^ v2.

This is similar to case (2) above and left to the reader.

(4) v ¼ Kv1.

M 0;w � nkKv1

iff M k;w � Kv1 (by the definition of V 0)
iff M k; u � v1 for all u 2 RkðwÞ
iff M 0; u � nkv1 for all u 2 RkðwÞ (again by the definition of V 0)
iff M 0; u � nkv1 for all u 2 RðwÞ (because Rk ¼ R)
iff M 0;w � Knkv.

(5) v ¼ ½r�v1.
M 0;w � nk½r�v1
iff M k;w � ½r�v1 (by the definition of V 0)
iff M k�r;w � v1
iff M 0;w � nk�rv1

(again, by the definition of V 0).

This ends the ‘only if’ part. �

Theorem 12. The problem of deciding satisfiability for single-agent epistemic logic with
assignments ELA is NP-complete.

Proof. By Proposition 10 redELA is a polynomial transformation from the language of ELA to
that of EL. Moreover, redELA preserves satisfiability because of Theorem 11. Therefore, the
complexity of the problem of deciding ELA satisfiability is at most that of deciding single-
agent EL satisfiability, which is in NP.

Due to Proposition 1, ELA is a conservative extension of EL. As the problem of deciding
EL satisfiability is NP-hard, the problem of deciding ELA satisfiability is also NP-hard. It
follows that the problem of deciding ELA satisfiability is NP-complete. �

16 H. van Ditmarsch et al.
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5.2. From PALA to EL

Now, we extend the procedure given in the last section to the entire logic PALA. The first
thing to do is to extend contexts to sequences of assignments and announcements.

Definition 13. The set CS of contextualised subformulae is the same as in Definition 6 plus
the following clause for announcements:

CSðk; ½!v1�v2Þ ¼ CSðk; v1Þ [ CSðk � !v1; v2Þ [ fhk; ½!v1�v2ig

Proposition 14. Let u be a PALA formula. Then cardðCSðk;uÞÞ 	 lenðuÞ.
Proof. We employ induction on the structure of u. The induction base, as well as cases (1) to
(4) are exactly as in the proof of Proposition 7. In the induction step we have an additional case:

(5) u ¼ ½v1�v2.
cardðCSðk; ½!v1�v2ÞÞ
	 cardðCSðk; v1ÞÞ þ cardðCSðk � !v1; v2ÞÞ þ cardðfhk; ½!v1�v2igÞ
	 lenðv1Þ þ lenðv2Þ þ 1 ðby I:H:Þ
¼ lenð½!v1�v2Þ:

This ends the proof. �

We define the set Bu of bi-implications as follows:

Bu ¼ fnkp $ pjhk; pi 2 CSððÞ;uÞ and there is no kk in k s:th: p 2 dom ðkkÞg [

fnkp $ nðk1;...;kk�1Þ
ðpÞkk jhk; pi 2 CSððÞ;uÞ and kk is the right most element of

k s:th: p 2 domðkkÞg[

fnk:v $ :nkvjhk; vi 2 CSððÞ;uÞg [

fnkv1^v2 $ ðnkv1 ^ nkv2Þjhk; v1 ^ v2i 2 CSððÞ;uÞg [

nkKv $ K
V

k	n;kk¼!w
nðk1;...;kk�1Þ
w

 !
! nkv

 !
jhk;Kvi 2 CSððÞ;uÞ and k is of length n

( )
[

fnk½r�v $ nk�rv jhk; ½r�vi 2 CSððÞ;uÞg [

fnk½!v1�v2 $ ðnkv1 ! nk�ð!v1Þv2 Þjhk; ½!v1�v2i 2 CSððÞ;uÞg

where we extend the domain function dom to announcements by stipulating domð!uÞ ¼ ;.
The clause for K conditions the abbreviation of v by the contextual truth of all the precondi-
tions w occurring in the context k (precisely, of the abbreviations of these preconditions).
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Finally, the reduction of the PALA formula u is the formula

redPALAðuÞ ¼ nðÞu ^K
^

Bu

� �

Example 15. Consider the formula u ¼ ½!:p�½q: ¼ p�Kq. Applying the reduction axioms we
get:

½!:p�½q:¼ p�Kq $ ½!:p�K½q:¼ p�q

$ ½!:p�Kp

$ :p ! K½!:p�p

$ :p ! Kð:p ! pÞ

$ :p ! Kp

The last formula is EL equivalent to p. Therefore, u is PALA satisfiable.
First, we compute the set of contextualised subformulae. We have:

CSððÞ; ½!:p�½q:¼p�KqÞ ¼ CSððÞ;:pÞ [ CSðð!:pÞ; ½q:¼p�KqÞ [ fhðÞ; ½!:p�½q:¼p�Kqig

¼ fhðÞ;:pi; hðÞ; pig [ CSðð!:pÞ; pÞ [ CSðð!:p; q:¼pÞ;KqÞ [

fhð!:pÞ; ½q:¼ p�Kqig [ fhðÞ; ½!:p�½q:¼p�Kqig

¼ fhðÞ;:pi; hðÞ; pig [ fhð!:pÞ; pig [ fhð!:p; q:¼pÞ; qi;

hð!:p; q:¼pÞ;Kqig [ fhð!:pÞ; ½q:¼p�Kqig [ fhðÞ; ½!:p�½q:¼p�Kqig

Now, using the bi-implications, the reduction of u is

nðÞ½!:p�½q:¼p�Kq ^KððnðÞ½!:p�½q:¼p�Kq $ ðnðÞ:p ! nð!:pÞ½q:¼p�KqÞÞ ^

ðnð!:pÞ½q:¼p�Kq $ nð!:p;q:¼pÞ
Kq Þ ^

ðnð!:p;q:¼pÞ
Kq $ K

�
nðÞ:p ! nð!:p;q:¼pÞ

q

�
Þ ^

ðnð!:p;q:¼pÞ
q $ nð!:pÞp Þ ^

18 H. van Ditmarsch et al.
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ðnð!:pÞp $ pÞ ^

ðnðÞ:p $ :nðÞp Þ ^

ðnðÞp $ pÞ Þ
It can be checked that the reduction of u is EL satisfiable.

Proposition 16. redPALA is a polynomial transformation.

Proof. First, due to Proposition 14, cardðCSðk;uÞÞ 	 lenðuÞ. Second, the longest bi-implica-
tions are those of the form

nkKv $ Kðð^k	n;kk¼!wn
ðk1;...;kk�1Þ
wk

Þ ! nkvÞ:

As n is at most lenðuÞ, the length of the conjunction ^k	n;kk¼!wn
ðk1;...;kk�1Þ
wk

is at most
2� lenðuÞ � 1. Hence, the length of that bi-implication itself is at most 7þ ð2� 1Þ þ 2�
ð2� lenðuÞ � 1þ 5ÞÞ ¼ 17þ ð4� lenðuÞÞ. Therefore, the length of each bi-implication is
linear in lenðuÞ.

It follows that the length of ðredPALAðuÞ is quadratic in lenðuÞ. �

Theorem 17. For every PALA formula u0:

(1) redPALAðu0Þ is an EL formula.
(2) u0 is PALA satisfiable if and only if redPALAðu0Þ ¼ nðÞu0

^KðVBu0
Þ is EL

satisfiable.

Proof. First, redPALAðu0Þ is clearly an EL formula.

For the ‘if’ part of the second statement suppose M ;w0 � nðÞu0
^KðVBu0

Þ. We show by
induction on lenðk1Þ þ . . .þ lenðknÞ þ lenðvÞ that for every ððk1; . . . ; knÞ; vÞ 2 CSððÞ;u0Þ:

if M ðk1;...;kk�1Þ, w0 � wk for all kk s.th. kk ¼ !wk , and w 2 Rðk1;...;kk�1Þðw0Þ,
then M ;w � nkv iff M k;w � v

where the definition of length is extended to announcements by stipulating lenð!uÞ ¼ lenðuÞ.
Since ððÞ;u0Þ 2 CSððÞ;u0Þ this allows us to conclude that M ;w0 � u0, i.e. that u0 is PALA
satisfiable.

In the induction base k ¼ ðÞ and v ¼ p, for some p in u0. Then we have M ;w � nðÞp iff
M ;w � p because M ;w � Bu and because w 2 RðÞðw0Þ.

In the induction step, let k be ðk1; . . . ; knÞ, for some n � 0, and suppose M ðk1;...;kk�1Þ;
w0 � wk if kk ¼ !wk . We analyse the form of u. There are six cases. Cases (1) to (3) and (5)
are exactly as in the ‘if’ part of the proof of Theorem 11. Case (4) has to be adapted:

(4) v ¼ Kv1.

M ;w � nkKv1

iff M ;w � Kðð^k	n;kk¼!uk
nðk1;...;kk�1Þ
wk

Þ ! nkv1Þ (because M ;w0 � Bu0
and w 2 Rkðw0Þ)

iff for all u 2 RðwÞ, M ; u � nðk1;...kk�1Þ
wk

for all k 	 n s.th. kk ¼ !wk , implies M ; u � nkv1
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iff for all u 2 RðwÞ, M ðk1;...kk�1Þ; u � wk for all k 	 n s.th. kk ¼ !wk , implies
Mk; u � v1 ðby I:H:; n timesÞ5
iff for all u 2 RkðwÞ;M k; u � v1 (because u 2 RkðwÞ

iff u 2 RðwÞ and M ðk1;...kk�1Þ; u � wk for all k 	 n)6

iff M k;w � Kv1
Case (6) is new:

(6) v ¼ ½!v1�v2:
M ;w � nk½!v1�v2
iff M ;w � nkv1 ! nk�!v1v2

ðbecause M ;w � Bu0
Þ

iff M k;w � ½!v1�v2
This ends the ‘if’ part.

Let us now prove the ‘only if’ part. Let M ¼ hW ;R;V i and M ;w0 � u0. We define a
new model M 0 ¼ hW ;R;V 0i, where V 0 is defined as follows: V 0ðpÞ ¼ V ðpÞ if p is in u0, and
V 0ðnkvÞ ¼ fwjM k;w � vg for ðk; vÞ 2 CSððÞ;u0Þ. We show that:

M 0;w � Bu0
; for all w 2 W

There are six cases, according to the form of the left hand sides of Bu0
. Cases (1) to (3)

and (5) are exactly as in the ‘only if’ part of the proof of Theorem 11, so we only prove the
remaining two cases.

ð4Þ v ¼ Kv1
Let k beðk1; . . . ; knÞ:
M 0;w � nkKv1

iff Mk;w � Kv1 ðby the definition of V 0Þ
iff for all u 2 RkðwÞ;M k; u � v1
iff for all u 2 RðwÞ;M ðk1;���;kk�1Þ; u � wk for all k 	 n s:th: kk ¼ wk implies M k; u � v1

(because u 2 Rk(w) iff u 2 RðwÞ and M ðk1;...kk�1Þ; u � wk for every k 	 n)8.
iff for all u 2 RðwÞ; M 0; u � nðk1;���;kk�1Þ

wk
for all k 	 n s:th: kk ¼ !wk implies M 0; u � nkv1

(again by the definition of V 0)
iff M 0;w � Kðð^k	nn

k1;...;kk�1

wk
Þ ! nkv1Þ

ð6Þ v ¼ ½!v1�v2:
M 0;w � nk½!v1�v2
iff M k;w � ½!v1�v2 ðby the definition of V 0Þ
iff M k;w � v1 implies M k�!v1 ;w � v2
iff M 0;w � nkv1 implies M 0;w � nk�!v1v2

ðagain by the definition of V 0Þ
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iff M 0;w � nkv1 ! nk�!v1v2

This ends the ‘only if’ part (and the proof). �

Theorem 18. The problem of deciding satisfiability for single-agent public announcement
logic with assignment is NP-complete.

Proof. Due to Proposition 16, redPALA is a polynomial transformation. Then NP-membership
follows from Theorem 17. Finally, NP-hardness follows from the fact that PALA is a
conservative extension of EL (Proposition 1). �

6. Multiagent case

As said before, multiagent PALA is a straightforward extension of PALA: Assume a finite
non-empty set N of agents. Then, in the language of multiagent PALA, instead of a single
epistemic operator K, we define an operator Ki for each agent i 2 N . Formulae of the form
Kiu are read ‘agent i knows that u’. The length of such formulae is defined as usual:
lenðKiuÞ ¼ 1þ lenðuÞ:9

For its semantics, the models are tuples M ¼ hW ;R;V i, where W and V are as for sin-
gle-agent PALA and where R : N ! 2W�W associates to each agent i an equivalence relation
Ri: The satisfaction relation is as before for the Boolean and the dynamic operators, and:

M ;w�Kiu iff RiðwÞ# sutM
The technique we used to provide an optimal transformation from single-agent PALA to

single-agent EL cannot be transferred literally in the multiagent case. The reason is simple.
Note that the key idea of the reduction is that each bi-implication in Bu is enforced to be true
in every world of the model (assuming that it is point-generated).

In the single-agent case, the operator K is enough to enforce that, but it is clearly not
enough in the multiagent case.

There is a simple way to get around this problem. All that we need is a kind of master
modality. That role could be played by the common knowledge operator: if one replaces the
operator K by that operator in theorems 11 and 17 then we obtain the same results. In this
case, the reduction would be from multiagent PALA without common knowledge to ultiagent
EL with common knowledge. But the latter is EXPTIME-complete, while multiagent PALA
without common knowledge is PSPACE-complete, as we show in the sequel.

To do so we have to add the ‘everybody knows’ operator E to our language. Formulae of
the form Eu are read ‘every agent knows that u’. As before, its length is
lenðEuÞ ¼ 1þ lenðuÞ. For its semantics, we use the same models, and the satisfaction rela-
tion is as before, plus:

M ;w�Eu iff
[
i2N

RiðwÞ# sutM

The set of agents N being finite, Eu is logically equivalent to ^i2NKiu. Hence, multi-
agent EL with E is just as expressive as multiagent EL; and E could have been defined as an
abbreviation in multiagent EL: According to Lutz (2006, Footnote 2), the addition of this
operator only makes it more succinct, without increasing the computational complexity of the
problem of deciding satisfiability.

However, E is not a master modality yet; we need yet another definition. The epistemic
depth edðuÞ of a PALA formula u is recursively defined as follows:
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edðpÞ ¼ 0

edð:uÞ ¼ edðuÞ

edðu1 ^ u2Þ ¼ maxðedðu1Þ; edðu2ÞÞ

edðKiuÞ ¼ 1þ edðuÞ

edðEuÞ ¼ 1þ edðuÞ

edð½!u1�u2Þ ¼ maxðedðu1Þ; edðu2ÞÞ

edð½r�uÞ ¼ maxð max
p2domðrÞ

ðedðrðpÞÞ;uÞ

Let Ek stand for the string formed by operators E repeated k times; precisely, we induc-
tively define E0u ¼ u; and Ekþ1u ¼ EEku. Now we are ready to define reduction.

redPALAðuÞ ¼ nðÞu ^ EedðuÞ ^Bu

� �

Proposition 19. redPALA is a polynomial transformation.

Proof. As seen in the proof of Proposition 16, for every nkv $ w 2 Bu we have

lenðnkv $ wÞ 	 17þ ð4� lenðuÞÞ:

And as seen above in Proposition 14, cardðBuÞ 	 lenðuÞ. Therefore,

lenð^ BuÞ 	 lenðuÞ � ð17þ ð4� lenðuÞÞ þ 1Þ:

Finally, as edðuÞ 	 lenðuÞ, we have

len
�
EedðuÞ

�V
Bu

��
¼ edðuÞ þ lenð

^
BuÞ	lenðuÞ þ lenðuÞ � ð17þ ð4� lenðuÞÞ þ 1Þ

The length of redPALAðuÞ is therefore quadratic in the length of u. �

Theorem 20. For every multiagent PALA formula u0 redPALA ðu0Þ is a multiagent EL

formula, and u0 satisfiable if and only if redPALAðu0Þ ¼ nðÞu0
^
�
^k	edðu0ÞE

kðVBu0
Þ
�

is

satisfiable.

Proof. This is essentially the same as for Theorem 17.

The problem of deciding multiagent EL satisfiability is PSPACE-complete. Therefore, we
immediately get:

Theorem 21. The problem of deciding multiagent PALA satisfiability is PSPACE-complete.
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7. Conclusion

We gave optimal decision procedures for the logic of public announcements and assignments
PALA; adapting Lutz’s (2006) abbreviation technique for PAL: We showed that the problem
of deciding validity is coNP-complete for single-agent PALA; and PSPACE-complete for
multiagent PALA.

Our results also have practical value because they can be directly applied to reasoning
about actions in the situation calculus. Indeed, in van Ditmarsch, Herzig, and de Lima
(2007), and van Ditmarsch et al. (2011), we showed that Reiter’s (1991, 2001) solution to
the frame problem in terms of successor state axioms can be recast in PALA: assignments
allow the modelling of ‘physical’ actions, and announcements allow the modelling of epi-
stemic observation actions. This means that one can also see our procedures as optimal
decision procedures for Reiter-style reasoning about actions. In this respect, an interesting
question is whether our work can be extended further to deal with so-called sensing
actions. Such actions are defined in Scherl and Levesque (1993, 2003): they are actions of
the form ?u, which test whether some boolean formula u is true. They can be viewed as
abbreviating the nondeterministic composition of two announcements: ?u ¼ !u [ !:u. The
problem is that the expansion of such abbreviations leads to exponential blow-up. We there-
fore cannot straightforwardly integrate primitive sensing actions into PALA: it is not clear
how the associated reduction axiom

½?u�Kiw$ððu ! Kiðu ! ½?u�wÞÞ^ ð:u ! Kið:u ! ½?u�wÞÞÞ

could be ‘compiled’ into the polynomial transformation. Further evidence that the presence of
sensing actions increases complexity is provided by the result in Herzig, Lang, Longin, and
Polacsek (2000) that plan verification in this case is �p

2 -complete.
Another generalisation of our results would be to allow for non-public events, as in

Baltag, Moss, and Solecki (1998), and Bacchus, Halpern, and Levesque (1999).
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Notes
1. This paper extends and improves the second part in van Ditmarsch, Herzig, and de Lima (2007).

The first part of that paper has been extended and improved in van Ditmarsch et al. (2011).
2. Strictly speaking, the propositional letter p has to be encoded as a binary number n, and the length

of p is therefore log2 n. It follows that the number of symbols required to write down a formula u
is lenðuÞ � log2(lenðuÞ+1). This, however, does not change our results. In particular, the reduction
of Proposition 10 remains polynomial.

3. The induction hypothesis is applicable because lenðk1; :::; kk�1Þ þ lenððpÞkkÞ < lenðk1; :::; kk�1Þ
þlenðkkÞ < lenðkÞ þ lenðpÞ, and because hðk1; :::; kk�1Þ; ðpÞkki 2 CSððÞ;u0Þ. The latter is guaran-
teed by Lemma 8.

4. The induction hypothesis is applicable because lenðk � rÞ + lenðwÞ < lenðkÞ +lenð½r�wÞ.
5. The induction hypothesis applies to every wk because

lenðk1Þ þ � � � þ lenðkk�1Þþ lenðwkÞ ¼ lenðk1Þ þ � � � þ lenðkk�1Þ þ lenðkkÞ
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	 lenðk1Þ þ � � � þ lenðknÞ

\ lenðk1Þ þ � � � þ lenðknÞ þ lenðv1Þ:

6. In detail, we prove by induction on k that u 2 Rðk1 ;���kkÞðwÞ iff u 2 Rðk1 ;���kk�1ÞðwÞ and kk ¼ !wk

implies M ðk1 ;���kk�1Þ; u � wk .
7. Note that the induction hypothesis applies to v2 because due to Mk;w � v1, the condition of the

inductionhypothesis is satisfied.
8. In detail, we prove by induction on k that u 2 Rðk1 ;���kkÞðwÞ iff u � Rðk1;���kk�1ÞðwÞ and kk ¼ !wk

implies M ðk1 ;���kk�1Þ; u � wk .
9. Strictly speaking, we also have to encode the length of the agent index of K. We suppose neverthe-

less that len(Kiu) = 1 + lenðuÞ for the same reasons as we gave in Endnote 2.
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